Enterohemorrhagic Escherichia coli O157:H7 (EHEC) is an important food-borne pathogen that colonizes the colon. Transposon-insertion sequencing (TIS) was used to identify genes required for EHEC and E. coli K-12 growth in vitro and for EHEC growth in vivo in the infant rabbit colon. Surprisingly, many conserved loci contribute to EHEC's but not to K-12's growth in vitro. There was a restrictive bottleneck for EHEC colonization of the rabbit colon, which complicated identification of EHEC genes facilitating growth in vivo. Both a refined version of an existing analytic framework as well as PCA-based analysis were used to compensate for the effects of the infection bottleneck. These analyses confirmed that the EHEC LEE-encoded type III secretion apparatus is required for growth in vivo and revealed that only a few effectors are critical for in vivo fitness. Over 200 mutants not previously associated with EHEC survival/growth in vivo also appeared attenuated in vivo, and a subset of these putative in vivo fitness factors were validated. Some were found to contribute to efficient type-three secretion while others, including tatABC, oxyR, envC, acrAB, and cvpA, promote EHEC resistance to host-derived stresses. cvpA is also required for intestinal growth of several other enteric pathogens, and proved to be required for EHEC, Vibrio cholerae and Vibrio parahaemolyticus resistance to the bile salt deoxycholate, highlighting the important role of this previously uncharacterized protein in pathogen survival. Collectively, our findings provide a comprehensive framework for understanding EHEC growth in the intestine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6705877PMC
http://dx.doi.org/10.1371/journal.ppat.1007652DOI Listing

Publication Analysis

Top Keywords

ehec growth
12
growth vivo
12
ehec
11
transposon-insertion sequencing
8
growth
8
required ehec
8
growth vitro
8
rabbit colon
8
vivo fitness
8
vivo
7

Similar Publications

Unlabelled: The ability to treat infections is threatened by the rapid emergence of antibiotic resistance among pathogenic microbes. Therefore, new antimicrobials are needed. Here we evaluate mannitol-1-phosphate 5-dehydrogenase (MtlD) as a potential new drug target.

View Article and Find Full Text PDF

Molecular characterization and safety properties of multi drug-resistant Escherichia coli O157:H7 bacteriophages.

BMC Microbiol

December 2024

Antimicrobial Resistance and Phage Biocontrol Research Group (AREPHABREG), Department of Microbiology, School of Biological Sciences, Faculty of Natural and Agricultural Sciences, North‒West University, Private Mail Bag X2046, Mmabatho, 2735, South Africa.

The increase in multi drug resistance (MDR) amongst food-borne pathogens such as Escherichia coli O157:H7, coupled with the upsurge of food-borne infections caused by these pathogens is a major public health concern. Lytic phages have been employed as an alternative to antibiotics for use against food-borne pathogens. However, for effective application, phages should be selectively toxic.

View Article and Find Full Text PDF

Genomic island-encoded LmiA regulates acid resistance and biofilm formation in enterohemorrhagic O157:H7.

Gut Microbes

December 2025

TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, P. R. China.

Enterohemorrhagic (EHEC) O157:H7 is an important intestinal pathogen that causes severe foodborne diseases. We previously demonstrated that the genomic island-encoded regulator LmiA activates the locus of enterocyte effacement (LEE) genes to promote EHEC O157:H7 adherence and colonization in the host intestine. However, whether LmiA is involved in the regulation of any other biological processes in EHEC O157:H7 remains largely unexplored.

View Article and Find Full Text PDF

Modification of microporous bionanocomposite films with visible light-activated photocatalytic antimicrobial TNT-CuO nanoparticles for active fruit packaging.

Food Res Int

January 2025

School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China. Electronic address:

Article Synopsis
  • Active packaging technologies are advancing to improve the preservation of fresh produce by preventing microbial contamination and managing internal packaging atmospheres.
  • This study presents MT film, a novel active fruit packaging made by enhancing a bionanocomposite film with CuO-doped titania nanotubes, which shows excellent mechanical strength and water resistance.
  • The MT film effectively inhibits microbial growth and regulates gas exchange, demonstrating significant reductions in bacterial and mold counts on blueberries, suggesting it could enhance food quality and extend shelf life while minimizing losses in the supply chain.
View Article and Find Full Text PDF

Inactivation of Listeria monocytogenes, Escherichia coli O157:H7, and Staphylococcus aureus by sequential light-emitting diodes (LEDs) treatment at 365 nm and 420 nm.

Food Res Int

January 2025

College of Food Science and Nutritional Engineering, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing 100083, PR China. Electronic address:

Frequent outbreaks caused by foodborne pathogens pose long-term risks to consumer health. To proactively reduce the load of pathogenic bacteria during food processing, a novel light-based antibacterial approach was developed by sequential application of 365 nm and 420 nm light-emitting diodes (LEDs). Results demonstrated that after treatment with 365 nm (480 J/cm) followed by 420 nm (307.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!