Hepatocellular carcinoma (HCC), a common deadly malignancy, requires novel therapeutic strategies to improve the survival rate. Combining chemotherapy and gene therapy is a promising approach for increasing efficiency and reducing side effects. We report on the design of highly specific lipid nanoparticles (LNPs) encapsulating both the chemotherapeutic drug, sorafenib (SOR), and siRNA against the midkine gene (MK), thereby conferring a novel highly efficient anticancer effect on HCC. The LNPs were modified with a targeting peptide, SP94, which is selective for hepatic cancer cells (HCCs), thus permitting the specific delivery of the payload. MK-siRNA increased the sensitivity of HCCs, HepG2, to SOR (IC for SOR+MK-siRNA: 5 ± 1.50 μM compared to 9 ± 2.20 and 17 ± 2.60 μM for SOR+control siRNA and MK-siRNA, respectively). The selectivity was confirmed by cellular uptake, cytotoxicity, and gene-silencing studies in HCCs, HepG2, and Hepa 1-6, compared to other cancerous cells, HeLa, and normal cells, FL83B. The use of a novel pH-sensitive lipid, YSK05, increased the cytotoxic and gene knockdown efficiencies and limited extracellular drug release. The nanoparticles were also compatible with serum and showed no aggregation after long storage. The efficient and specific codelivery system reported here is a highly promising strategy for the treatment of HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.9b00738 | DOI Listing |
Ann Bot
January 2025
Laboratório de Ecologia e Biogeografia de Plantas, Departamento de Biodiversidade, Setor Palotina, Universidade Federal do Paraná, Rua Pioneiro, 2153, Jardim Dallas, CEP 85950 000, Palotina, Paraná, Brazil.
Background: Epiphyllous bryophytes are a group of plants with complex adaptations to colonize the leaves of vascular plants and are considered one of the most specialized and sensitive groups to environmental changes. Despite their specificity and ecological importance, these plants represent a largely neglected group in relation to scientific research and ecological data. This lack of information directly affects our understanding of biodiversity patterns and compromises the conservation of this group in threatened ecosystems.
View Article and Find Full Text PDFMatern Child Health J
January 2025
Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA.
Objective: Development of postpartum depressive symptoms (PDS) is influenced by many social determinants of health, including income, discrimination, and other stressful life experiences. Early recognition of PDS is essential to reduce its long-term impact on mothers and their children, but postpartum checkups are highly underutilized. This study examined how stressful life experiences and race-based discrimination influence PDS development and whether or not a women has a postpartum checkup.
View Article and Find Full Text PDFBioelectromagnetics
January 2025
Seibersdorf Labor GmbH, Seibersdorf, Austria.
The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.
View Article and Find Full Text PDFBiotechnol Bioeng
January 2025
Boehringer Ingelheim Pharma GmbH & Co.KG, Biopharmaceuticals Germany, Biberach an der Riß, Germany.
Process models are increasingly used to support upstream process development in the biopharmaceutical industry for process optimization, scale-up and to reduce experimental effort. Parametric unstructured models based on biological mechanisms are highly promising, since they do not require large amounts of data. The critical part in the application is the certainty of the parameter estimates, since uncertainty of the parameter estimates propagates to model predictions and can increase the risk associated with those predictions.
View Article and Find Full Text PDFAnal Methods
November 2017
Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!