Low-Rank Matrix Learning Using Biconvex Surrogate Minimization.

IEEE Trans Neural Netw Learn Syst

Published: November 2019

Many machine learning problems involve learning a low-rank positive semidefinite matrix. However, existing solvers for this low-rank semidefinite program (SDP) are often expensive. In this paper, by factorizing the target matrix as a product of two matrices and using a Courant penalty to penalize for their difference, we reformulate the SDP as a biconvex optimization problem. This allows the use of multiconvex optimization techniques to define simple surrogates, which can be minimized easily by block coordinate descent. Moreover, while traditionally this biconvex problem approaches the original problem only when the penalty parameter is infinite, we show that the two problems are equivalent when the penalty parameter is sufficiently large. Experiments on a number of SDP applications in machine learning show that the proposed algorithm is as accurate as other state-of-the-art algorithms, but is much faster, especially on large data sets.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2019.2927819DOI Listing

Publication Analysis

Top Keywords

machine learning
8
penalty parameter
8
low-rank matrix
4
learning
4
matrix learning
4
learning biconvex
4
biconvex surrogate
4
surrogate minimization
4
minimization machine
4
learning problems
4

Similar Publications

BaNDyT: Bayesian Network Modeling of Molecular Dynamics Trajectories.

J Chem Inf Model

January 2025

Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, California 91016, United States.

Bayesian network modeling (BN modeling, or BNM) is an interpretable machine learning method for constructing probabilistic graphical models from the data. In recent years, it has been extensively applied to diverse types of biomedical data sets. Concurrently, our ability to perform long-time scale molecular dynamics (MD) simulations on proteins and other materials has increased exponentially.

View Article and Find Full Text PDF

Evaluation of a Machine Learning-Guided Strategy for Elevated Lipoprotein(a) Screening in Health Systems.

Circ Genom Precis Med

January 2025

Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT (A.A., L.S.D., E.K.O., R.K.).

Background: While universal screening for Lp(a; lipoprotein[a]) is increasingly recommended, <0.5% of patients undergo Lp(a) testing. Here, we assessed the feasibility of deploying Algorithmic Risk Inspection for Screening Elevated Lp(a; ARISE), a validated machine learning tool, to health system electronic health records to increase the yield of Lp(a) testing.

View Article and Find Full Text PDF

Artificial intelligence and machine learning capabilities in the detection of acute scaphoid fracture: a critical review.

J Hand Surg Eur Vol

January 2025

Clinical Scientific Computing, Guy's and St Thomas' NHS Foundation Trust, London, UK.

This paper discusses the current literature surrounding the potential use of artificial intelligence and machine learning models in the diagnosis of acute obvious and occult scaphoid fractures. Current studies have notable methodological flaws and are at high risk of bias, precluding meaningful comparisons with clinician performance (the current reference standard). Specific areas should be addressed in future studies to help advance the meaningful and clinical use of artificial intelligence for radiograph interpretation.

View Article and Find Full Text PDF

Background: Established risk models may not be applicable to patients at higher cardiovascular risk with a measured Lp(a) (lipoprotein[a]) level, a causal risk factor for atherosclerotic cardiovascular disease.

Methods: This was a model development study. The data source was the Nashville Biosciences Lp(a) data set, which includes clinical data from the Vanderbilt University Health System.

View Article and Find Full Text PDF

One primary goal of precision medicine is to estimate the individualized treatment rules that optimize patients' health outcomes based on individual characteristics. Health studies with multiple treatments are commonly seen in practice. However, most existing individualized treatment rule estimation methods were developed for the studies with binary treatments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!