To reduce microbial loads in medicinal herbs, Cnidii Rhizoma and Alismatis Rhizoma were subjected to electron-beam (e-beam) irradiation at doses (≤10 kGy) as permitted by the Korean Food Code. The effects of e-beam irradiation on the microbial load, stability of the active components, and anti-inflammatory activity of medicinal herbs were determined. We observed that the total aerobic bacteria (TAB; 4.0-7.0 log CFU/g), yeasts and molds (Y&M; 3.3-6.8 log CFU/g), and coliform counts (CC; 3.2-3.8 log CFU/g) in both herb samples were effectively reduced in a dose-dependent manner, resulting in acceptable levels of <3.0 log CFU/g in TAB and Y&M and negative in CC at 10 kGy irradiation. The concentration of the active components (0.87-4.22 mg/g) of Cnidii Rhizoma, including z-ligustilide, chlorogenic acid, senkyunolide A, and ferulic acid, in order of prevalence and those (0.86-2.76 mg/g) of Alismatis Rhizoma, including Alisol B acetate and Alisol B, were not changed at irradiation doses of ≤10 kGy. The extracts of e-beam irradiated Cnidii Rhizoma and Alismatis Rhizoma showed a reduced production of inflammation-related factors, such as nitric oxide, prostaglandin E, interleukin (IL)-1β, and IL-6, in a concentration-dependent manner, which was induced by lipopolysaccharide in RAW 264.7 cell. However, there was no significant difference observed at e-beam irradiation doses of 0, 1, 5, and 10 kGy. Thus, we confirm that e-beam irradiation up to 10 kGy was effective for the control of microbial load in Cnidii Rhizoma and Alismatis Rhizoma without causing considerable changes in their major active components and anti-inflammatory activity. The results show the potential of e-beam application for sanitization of medicinal herbs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/jmf.2019.4429 | DOI Listing |
Gels
December 2024
Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea.
Polymerizable ionic liquid-based gel polymer electrolytes (PIL-GPEs) were developed for the first time using high-energy electron beam irradiation for high-performance lithium-ion batteries (LIBs). By incorporating an imidazolium-based ionic liquid (PIL) into the polymer network, PIL-GPEs achieved high ionic conductivity (1.90 mS cm at 25 °C), a lithium transference number of 0.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
National Institute for Laser, Plasma and Radiation Physics, 409 Atomiștilor, 077125 Măgurele, Romania.
This study focused on the formulation, electron beam (e-beam) crosslinking, and characterisation of hydrogels enriched with lavender oil (LO) to enhance their structural and functional properties for biomedical applications. Stable hydrogels were synthesised using water-soluble polymers and suitable ratios of Tween 80 and Isopropyl alcohol (IPA) as surfactant and co-surfactant, respectively, via e-beam irradiation at doses up to 70 kGy. The most effective crosslinking was achieved with a radiation dose of 30 kGy, depending on the concentrations of surfactants and LO.
View Article and Find Full Text PDFMolecules
October 2024
Department of Bio-Chemical Engineering, Chosun University, Chosundaegil 146, Dong-gu, Gwangju 61452, Republic of Korea.
This article presents an efficient method for isolating cellulose nanocrystals (CNcs) from seaweed waste using a combination of electron beam (E-beam) irradiation and acid hydrolysis. This approach not only reduces the chemical consumption and processing time, but also improves the crystallinity and yield of the CNcs. The isolated CNcs were then thermally annealed at 800 and 1000 °C to produce porous nanocarbon materials, which were characterized using scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy to assess their structural and chemical properties.
View Article and Find Full Text PDFInt J Biol Macromol
November 2024
College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China. Electronic address:
This study aimed to investigate the effects of electron beam (E-beam) irradiation at different doses (0-15 kGy) on the solubility, rheological properties, emulsification characteristics, and moisture distribution of chicken myofibrillar proteins (MPs). Irradiation treatment notably increased the solubility, surface hydrophobicity, emulsification properties, and apparent viscosity of MPs, based on conformational changes caused by irradiation-induced oxidative denaturation of proteins. However, high doses of irradiation (15 kGy) induced in excessive cross-linking and aggregation of proteins, reducing the solubility, emulsification properties, and shear stress.
View Article and Find Full Text PDFACS Omega
August 2024
Department of Physics, Baylor University, Waco, Texas 76798, United States.
Understanding the effects of laser light, water vapor, and energetic electron irradiation on the intrinsic properties of perovskites is important in the development of perovskite-based solar cells. Various phase transition and degradation processes have been reported when these agents interact with perovskites separately. However, detailed studies of their synergistic effects are still missing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!