Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Pathological diagnosis plays an important role in the diagnosis and treatment of hepatocellular carcinoma (HCC). The traditional method of pathological diagnosis of most cancers requires freezing, slicing, hematoxylin and eosin staining, and manual analysis, limiting the speed of the diagnosis process. In this study, we designed a one-dimensional convolutional neural network to classify the hyperspectral data of HCC sample slices acquired by our hyperspectral imaging system. A weighted loss function was employed to promote the performance of the model. The proposed method allows us to accelerate the diagnosis process of identifying tumor tissues. Our deep learning model achieved good performance on our data set with sensitivity, specificity, and area under receiver operating characteristic curve of 0.871, 0.888, and 0.950, respectively. Meanwhile, our deep learning model outperformed the other machine learning methods assessed on our data set. The proposed method is a potential tool for the label-free and real-time pathologic diagnosis. © 2019 International Society for Advancement of Cytometry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cyto.a.23871 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!