In recent years, 2D layered materials have received considerable research interest on account of their substantial material systems and unique physicochemical properties. Among them, 2D layered transition metal dichalcogenides (TMDs), a star family member, have already been explored over the last few years and have exhibited excellent performance in electronics, catalysis, and other related fields. However, to fulfill the requirement for practical application, the batch production of 2D TMDs is essential. Recently, the chemical vapor deposition (CVD) technique was considered as an elegant alternative for successfully growing 2D TMDs and their heterostructures. The latest research advances in the controllable synthesis of 2D TMDs and related heterostructures/superlattices via the CVD approach are illustrated here. The controlled growth behavior, preparation strategies, and breakthroughs on the synthesis of new 2D TMDs and their heterostructures, as well as their unique physical phenomena, are also discussed. Recent progress on the application of CVD-grown 2D materials is revealed with particular attention to electronics/optoelectronic devices and catalysts. Finally, the challenges and future prospects are considered regarding the current development of 2D TMDs and related heterostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201901694 | DOI Listing |
Chem Rev
January 2025
Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States.
Two-dimensional transition metal dichalcogenides (2D TMDs) are a promising class of functional materials for fundamental physics explorations and applications in next-generation electronics, catalysis, quantum technologies, and energy-related fields. Theory and simulations have played a pivotal role in recent advancements, from understanding physical properties and discovering new materials to elucidating synthesis processes and designing novel devices. The key has been developments in theory, deep learning, molecular dynamics, high-throughput computations, and multiscale methods.
View Article and Find Full Text PDFJ Phys Condens Matter
December 2024
Department of Physics, IIT Jodhpur, NH 62, Karwar, Jodhpur, Jodhpur, Rajasthan, 342011, INDIA.
The industrialization has severely impacted the ecosystem because of intensive use of chemicals and gases, causing the undesired outcomes such as hazardous gases, e.g., carbon monoxide (CO), nitrox oxide (NOx), ammonia (NH3), hydrogen (H2), hydrogen sulfide (H2S) and even volatile organic compounds.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials, University of Manchester, Manchester M13 9PL, U.K.
Nanophotonics
March 2024
Department of Physics, Hanyang University, Seoul 04763, Korea.
Transition metal dichalcogenide (TMDs) heterostructure, particularly the lateral heterostructure of two different TMDs, is gaining attention as ultrathin photonic devices based on the charge transfer (CT) excitons generated at the junction. However, the characteristics of the interface of the lateral heterostructure, determining the electronic band structure and alignment at the heterojunction region, have rarely been studied due to the limited spatial resolution of nondestructive analysis systems. In this study, we investigated the confined phonons resulting from the phonon-disorder scattering process involving multiple disorders at the lateral heterostructure interface of MoS-WS to prove the consequences of disorder-mediated deformation in the band structure.
View Article and Find Full Text PDFNat Commun
December 2024
International Center for Quantum Design of Functional Materials (ICQD), Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23026, China.
Heterostructures and superlattices composed of layered transition metal dichalcogenides (TMDs), celebrated for their superior emergent properties over individual components, offer significant promise for the development of multifunctional electronic devices. However, conventional fabrication techniques for these structures depend on layer-by-layer artificial construction and are hindered by their complexity and inefficiency. Herein, we introduce a universal strategy for the automated synthesis of TMD superlattice single crystals through self-assembly, exemplified by the NbSeTe 1T/1H superlattice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!