Purpose: To use four-dimensional (4D) dose accumulation based on deformable image registration (DIR) to assess dosimetric uncertainty in lung stereotactic body radiation therapy (SBRT) treatment planning. A novel concept, the Evaluation Target Volume (ETV), was introduced to achieve this goal.

Methods: The internal target volume (ITV) approach was used for treatment planning for 11 patients receiving lung SBRT. Retrospectively, 4D dose calculation was done in Pinnacle v9.10. Total dose was accumulated in the reference phase using DIR with MIM. DIR was validated using landmarks introduced by an expert radiation oncologist. The 4D and three-dimensional (3D) dose distributions were compared within the gross tumor volume (GTV) and the planning target volume (PTV) using the D and D (calculated as D ) metrics. For lung involvement, the mean dose and V , V , and V were used in the 3D to 4D dose comparison, and D (D ) was used for all other organs at risk (OAR). The new evaluation target volume (ETV) was calculated by expanding the GTV in the reference phase in order to include geometrical uncertainties of the DIR, interobserver variability in the definition of the tumor, and uncertainties of imaging and delivery systems. D and D metrics were then calculated on the basis of the ETV for 4D accumulated dose distributions, and these metrics were compared with those calculated from the PTV for 3D planned dose distributions.

Results: The target registration error (TRE) per spatial component was below 0.5 ± 2.1mm for all our patients. For five patients, dose degradation above 2% (>4% in 2 patients) was found in the PTV after 4D accumulation and attributed to anatomical variations due to breathing. Comparison of D and D metrics showed that the ETV (4D accumulated dose) estimated substantially lower coverage than the PTV (3D planning dose): in six out of the 11 cases, and for at least for one of the two metrics, coverage estimated by ETV was at least 5% lower than that estimated by PTV. Furthermore, the ETV approach revealed hot and cold spots within its boundaries.

Conclusions: A workflow for 4D dose accumulation based on DIR has been devised. Dose degradation was attributed to respiratory motion. To overcome limitations in the PTV for the purposes of evaluating DIR-based 4D accumulated dose distributions, a new concept, the ETV, was proposed. This concept appears to facilitate more reliable dose evaluation and a better understanding of dosimetric uncertainties due to motion and deformation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.13759DOI Listing

Publication Analysis

Top Keywords

dose
16
target volume
16
dose accumulation
12
dose distributions
12
accumulated dose
12
novel concept
8
stereotactic body
8
body radiation
8
radiation therapy
8
deformable image
8

Similar Publications

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

Introduction: The core objective of this study was to precisely locate metastatic lymph nodes, identify potential areas in nasopharyngeal carcinoma patients that may not require radiotherapy, and propose a hypothesis for reduced target volume radiotherapy on the basis of these findings. Ultimately, we reassessed the differences in dosimetry of organs at risk (OARs) between reduced target volume (reduced CTV2) radiotherapy and standard radiotherapy.

Methods And Materials: A total of 209 patients participated in the study.

View Article and Find Full Text PDF

Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.

View Article and Find Full Text PDF

Background: Triglyceride-glucose (TyG) index was regarded as a cost-efficient and reliable clinical surrogate marker for insulin resistance (IR), which was significantly correlated with cardiovascular disease (CVD). However, the TyG index and incident CVD in non-diabetic hypertension patients remains uncertain. The aim of study was to explore the impact of TyG index level and variability on risk of CVD among non-diabetic hypertension patients.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!