Controlling the stereospecific bonding motif of Au-thiolate links.

Nanoscale

Donostia International Physics Center, 20018 San Sebastián, Spain. and Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain and Ikerbasque, Basque Foundation for Science, Bilbao, Spain.

Published: September 2019

Over the last decades, organosulfur compounds at the interface of noble metals have proved to be extremely versatile systems for both fundamental and applied research. However, the anchoring of thiols to gold remained an object of controversy for a long time. The RS-Au-SR linkage, in particular, is a robust bonding configuration that displays interesting properties. It is generated spontaneously at room temperature and can be used for the production of extended molecular nanostructures. In this work we explore the behavior of 1,4-bis(4-mercaptophenyl)benzene (BMB) on the Au(111) surface, which results in the formation of 2D crystalline metal-organic assemblies stabilized by this type of Au-thiolate bonds. We show how to control the thiolate's stereospecific bonding motif and thereby choose whether to form ordered arrays of AuBMB units with embedded triangular nanopores or linearly stacked metal-organic chains. The former turn out to be thermodynamically favored structures and display confinement of the underneath Au(111) surface state. The electronic properties of single molecules as well as of the 2D crystalline self-assemblies have been characterized both on the metal-organic backbone and inside the associated pores.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9nr04383gDOI Listing

Publication Analysis

Top Keywords

stereospecific bonding
8
bonding motif
8
au111 surface
8
controlling stereospecific
4
motif au-thiolate
4
au-thiolate links
4
links decades
4
decades organosulfur
4
organosulfur compounds
4
compounds interface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!