To optimize the compositions of the lipid-based nanomedicine and to advance understanding of the roles of polyunsaturated phospholipids in biological membranes, this study examined the effects of polyunsaturated phospholipids on the degradation of giant unilamellar vesicles catalyzed by a secreted phospholipase A2 (sPLA) using fluorescence microscopy. Molecular interfacial packing, interaction, and degradation of the films containing various mixing ratios of saturated and polyunsaturated phospholipids were quantified using a Langmuir trough integrated with synchrotron X-ray surface scattering techniques. It was found that a high molar fraction (0.63 and above) of polyunsaturated phospholipids not only enhanced the rate of sPLA-catalyzed vesicle degradation but also changed the vesicle deformation process and degradation product morphology. Hydrolysis of the saturated phospholipids generated highly ordered liquid crystal domains, which was reduced or prohibited by the presence of the polyunsaturated phospholipids in the reactant film.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.9b01476DOI Listing

Publication Analysis

Top Keywords

polyunsaturated phospholipids
20
catalyzed secreted
8
secreted phospholipase
8
polyunsaturated
6
phospholipids
6
degradation
5
polyunsaturated phospholipid
4
phospholipid modified
4
modified membrane
4
membrane degradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!