5,10-Methenyltetrahydrofolate synthetase plays a significant role in folate metabolism by catalyzing the conversion of 5-formyltetrahydrofolate into 5,10-methenyltetrahydrofolate. The enzyme is important in some forms of chemotherapy, and it has been implicated in resistance to antifolate antibiotics. A co-crystal structure of the enzyme (1U3G) and primary sequence analysis were used to select highly conserved amino acids in close proximity to bound 5-formyltetrahydrofolate. The amino acids were then investigated using site directed mutagenesis and kinetics. Y123, E55, and F118 were concluded to be important for binding 5-formyltetrahydrofolate in the active site and/or for substrate turnover of the enzyme. Replacement of E55 or Y123 with alanine resulted in no detectable activity. The more subtle replacement of E55 with glutamine was also inactive suggesting an ionic interaction with 5-formyltetrahydrofolate. Mutations to F118 resulted in substantial increases in apparent K for both 5-formyltetrahydrofolate and ATP, but did not substantially affect catalytic turnover. Outside the active site, the replacement of Q144 with alanine yielded an enzyme that bound the substrates of ATP and 5-formyltetrahydrofolate with higher apparent K values than the wild-type enzyme, but demonstrated a 3.1 fold increase in k.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10930-019-09861-4 | DOI Listing |
Amino Acids
January 2025
Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
Recent studies have suggested that the interaction between diet and an individual's genetic predisposition can determine the likelihood of obesity and various metabolic disorders. The current study aimed to examine the association of dietary branched-chain amino acids(BCAAs) and aromatic amino acids(AAAs) with the expression of the leptin and FTO genes in the visceral and subcutaneous adipose tissues of individuals undergoing surgery. This cross-sectional study was conducted on 136 Iranian adults, both men and women, aged ≥18 years.
View Article and Find Full Text PDFJ Fluoresc
January 2025
School of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui, 237012, China.
Nitrogen@Carbon quantum dots (N@CQDs) are prepared using microwave hydrothermal method, and polyvinylpyrrolidone (PVP) and melamine are used as mixed C source and N source. Microwave reaction conditions of preparing the N@CQDs are 170 ℃ and 3 h. This N@CQDs are are used as fluorescence probe for detection of amino acids.
View Article and Find Full Text PDFCurr Nutr Rep
January 2025
Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.
Purpose Of Review: This review aims to determine whether muscle mass and function can be effectively maintained without relying on animal-based protein sources. We evaluate the quality, digestibility, and essential amino acid profiles of plant-based proteins to understand their potential in preventing and managing sarcopenia.
Recent Finding: Recent studies indicate that while animal-based proteins have traditionally been considered the gold standard for supporting muscle protein synthesis, certain plant-based protein blends, fortified with leucine or other essential amino acids, can produce comparable anabolic responses.
Biomed Chromatogr
February 2025
School of Pharmaceutical Sciences, Jilin University, Changchun, People's Republic of China.
Previous studies have suggested that ginsenoside Rg glycine ester derivative (RG) exhibits therapeutic potential in mitigating hypoxia. This study aimed to elucidate the potential mechanism of RG in hypoxia injury through a combined approach of metabolomics and network pharmacology. Initially, a CoCl-induced cell hypoxia model was established, and the therapeutic impact of RG on biochemical indices was evaluated.
View Article and Find Full Text PDFBiomed Chromatogr
February 2025
College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
Gualou-Xiebai-Banxia (GXB) decoction shows potential for treating myocardial ischemia (MI), although its underlying mechanism is not fully understood. In this study, a multimodal metabolomics approach, combining gas chromatography-mass spectrometry (GC-MS) and H-NMR, was employed to investigate the cardioprotective effects of GXB in a rat model of myocardial ischemia induced by ligation. ELISA assays and HE staining demonstrated that GXB effectively reduced myocardial injury, oxidative stress markers, and myocardial fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!