Puccinia striiformis f. sp. hordei, the causal organism of stripe rust in barley poses serious threats to its production. The present study examined the seedling response and changes in antioxidant defence system along with NADPH oxidase, hydrogen peroxide, and lipid peroxidation marker-malondialdehyde (MDA) in the four barley genotypes namely Jyoti, RD2900, RD2901, and RD2552 in response to M and G-races of stripe rust pathogen. Disease reaction showed Jyoti as susceptible genotype, RD2901 and RD2552 as resistant, whereas RD2900 behaved differentially to both the races. M-race which is predominant was found to be more virulent than G-race of barley stripe rust pathogen. RD2901 showed an increase in activities of NADPH oxidase, catalase, peroxidase, and enzymes of ascorbate-glutathione pathway along with ascorbate and glutathione pool on inoculation with M-race, which was accompanied by the decrease in hydrogen peroxide and MDA contents. Jyoti, on the other hand, showed an increase in peroxidase and glutathione-S-transferase activities only which were unable to maintain redox homeostasis. The scrutiny of data indicated an increase in ASA/DHA ratio on infection in all the genotypes irrespective of their behaviour towards the races. However, GSH/GSSG ratio significantly declined in Jyoti and increased or remained unaffected in the resistant genotypes which suggested that GSH/GSSG might be playing a vital role in imparting tolerance against stripe rust. Further, correlation studies also revealed that leaf damage was positively correlated with HO and MDA contents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00709-019-01428-5 | DOI Listing |
Front Plant Sci
December 2024
Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany.
Wheat ( spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually.
View Article and Find Full Text PDFSci Rep
December 2024
Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China.
Wheat stripe rust is a fungal disease caused by Puccinia striiformis f. sp. tritici.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Plant Breeding Institute, School of Life and Environmental Sciences, The University of Sydney, Cobbitty, NSW, 2570, Australia.
We analysed the chromosomal structures of two wheat-Thinopyrum intermedium addition lines Z4 and Z5 and resolved the linkage relationship between the leaf rust and stripe rust resistance genes in Z4. Wheat addition lines Z4 and Z5 carrying rust resistance genes from Thinopyrum intermedium (JJJJStSt, 2n = 6x = 42) together with three wheat lines involved in the production of these addition lines were analysed by rust response, 90K SNP genotyping, and molecular cytogenetic analysis. Seedling leaf rust (LR) responses to five diverse pathotypes indicated that the LR resistance gene(s) was located in translocation chromosome T3DS-3AS.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences/Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830000, China.
Xinjiang is an important region due to its unique epidemic characteristics of wheat stripe rust disease caused by f. sp. .
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
f. sp. () secretes a plethora of cell wall-degrading enzymes (CWDEs) to facilitate fungal invasion during infection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!