A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A kinetic study of roadside grass pyrolysis and digestate from anaerobic mono-digestion. | LitMetric

A kinetic study of roadside grass pyrolysis and digestate from anaerobic mono-digestion.

Bioresour Technol

University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, Zagreb, Croatia.

Published: November 2019

The aim of this research is to evaluate the thermogravimetric behaviour of roadside grass and its digestate obtained from mesophilic anaerobic mono-digestion by quantifying its impacts on biomass composition and properties. Thermogravimetric measurements were conducted in a laboratory furnace under nitrogen flowrate of 100 mL/min in the temperature range from 35 to 800 °C at five different heating rates of 2.5, 5, 10, 15 and 20 °C/min. Friedman and Kissinger-Akahira-Sunose differential and integral isoconversional models were applied to determine the distributions of activation energies and modified pre-exponential factors per reacted mass (degree of conversion). The investigation demonstrated that anaerobic digestion of roadside grass can be used to generate biochar-richer material (with significantly greater yield of final residues after pyrolysis) with less energy required for subsequent pyrolysis in comparison with raw roadside grass.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2019.121935DOI Listing

Publication Analysis

Top Keywords

roadside grass
16
anaerobic mono-digestion
8
kinetic study
4
roadside
4
study roadside
4
grass
4
grass pyrolysis
4
pyrolysis digestate
4
digestate anaerobic
4
mono-digestion aim
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!