In the present study, a novel biodegradable Zn-0.8Cu coronary artery stent was fabricated and implanted into porcine coronary arteries for up to 24 months. Micro-CT analysis showed that the implanted stent was able to maintain structural integrity after 6 months, while its disintegration occurred after 9 months of implantation. After 24 months of implantation, approximately 28 ± 13 vol% of the stent remained. Optical coherence tomography and histological analysis showed that the endothelialization process could be completed within the first month after implantation, and no inflammation responses or thrombosis formation was observed within 24 months. Cross-section analysis indicated that the subsequent degradation products had been removed in the abluminal direction, guaranteeing that the strut could be replaced by normal tissue without the risk of contaminating the circulatory system, causing neither thrombosis nor inflammation response. The present work demonstrates that the Zn-0.8Cu stent has provided sufficient structural supporting and exhibited an appropriate degradation rate during 24 months of implantation without degradation product accumulation, thrombosis, or inflammation response. The results indicate that the Zn-0.8Cu coronary artery stent is promising for further clinical applications. STATEMENT OF SIGNIFICANCE: Although Zn and its alloys have been considered to be potential candidates of biodegradable metals for vascular stent use, by far, no Zn-based stent with appropriate medical device performance has been reported because of the low mechanical properties of zinc. The present work presents promising results of a Zn-Cu biodegradable vascular stent in porcine coronary arteries. The Zn-Cu stent fabricated in this work demonstrated adequate medical device performance both in vitro and in vivo and degraded at a proper rate without safety problems induced. Furthermore, large animal models have more cardiovascular similarities as humans. Results of this study may provide further information of the Zn-based stents for translational medicine research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2019.08.012 | DOI Listing |
Am J Physiol Heart Circ Physiol
January 2025
Weatherhead P.E.T. Imaging Center, McGovern Medical School at UTHealth, Houston, Texas, USA.
An increasing number of procedures over the past two decades for aortic stenosis (AS) reflects the combination of an aging population and less invasive transcatheter options. As a result, the hemodynamics of the aortic valve (AV) have gained renewed interest to understand its behavior and to optimize patient selection. We studied the hemodynamic relationship between pressure loss (ΔP) and transvalvular flow (Q) of the normal AV as well as the impact of a variable supravalvular stenosis.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
Myocarditis, a leading cause of sudden cardiac death and heart transplantation, poses significant treatment challenges. The study of clinical samples from myocarditis patients reveals a correlation between the pathogenesis of myocarditis and cardiomyocyte mitochondrial DNA (mtDNA). During inflammation, the concentration of mtDNA in cardiomyocytes increases.
View Article and Find Full Text PDFBiomaterials
January 2025
Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA. Electronic address:
Direct pacing of the mid myocardium where re-entry originates can be used to prevent ventricular arrhythmias and circumvent the need for painful defibrillation or cardiac ablation. However, there are no pacing electrodes small enough to navigate the coronary veins that cross these culprit scar regions. To address this need, we have developed an injectable ionically conductive hydrogel electrode that can fill the epicardial coronary veins and transform them into flexible electrodes.
View Article and Find Full Text PDFVet Res Forum
November 2024
Department of Veterinary Medicine, College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India.
African swine fever (ASF) is considered as one of the most threatening diseases for the pig farming industry all over the world. Due to the lack of an effective vaccine, organized farms and backyard rearing must strictly enforce control measures in order to combat the disease. The present report describes the ASF epidemic in a piggery in Uttar Pradesh state, India.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Clarifying the inceptive pathophysiology of hypertensive heart disease helps to impede the disease progression. Through coarctation of the infrarenal abdominal aorta (AA), we induced hypertension in minipigs and evaluated physiological reactions and morpho-functional changes of the heart. Moderate aortic coarctation was achieved with approximately 30 mmHg systolic pressure gradient in minipigs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!