Osteocalcin is one of the most abundant noncollagenous proteins in bone. Phenotypes of osteocalcin knock-out mice (OC-/-) may vary on different backgrounds and with sex. Previous studies using adult female (OC-/-) mice on a mixed genetic background (129/B6) showed osteocalcin inhibited bone formation leading to weaker bone in wild-type (OC+/+). Yet on a pure (B6) genetic background male mice revealed osteocalcin improved fracture resistance and OC-/- bones were more prone to fracture. Osteocalcin is decreased with age and in some diseases (diabetes) where bone weakness is observed. The effect of osteocalcin in adult female bone from mice on a pure B6 background is unknown. We investigated differences in bone mineral properties and bone strength in female adult (6 months) (OC+/+) and (OC-/-) mice on a pure C57BL/6J background using Fourier Transform Infrared Imaging (FTIRI), micro-computed tomography (uCT), biomechanical measurements, histomorphometry and serum turnover markers (P1NP, CTX). Similar to female age matched mice on the (129/C57) background we found B6 OC-/- mice had a higher bone formation rate, no change in bone resorption, more immature mineral, decreased crystallinity and increased trabecular bone as compared to OC+/+. In contrast, the OC-/- mice on a pure B6 background had a lower bone mineral density, lower mineral to matrix ratio resulting in reduced stiffness and weaker bone strength. Our results demonstrate some properties of the OC-/- phenotype are dependent on genetic background. This may suggest that reduced osteocalcin may contribute to fracture and weaker bone in some groups of elderly and adults with diseases where osteocalcin is low.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8243730 | PMC |
http://dx.doi.org/10.1016/j.bone.2019.08.004 | DOI Listing |
J Clin Periodontol
January 2025
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China.
Aim: To investigate the involvement of low-density lipoprotein receptor-related protein 5 (LRP5) in inflammation and alveolar bone loss in periodontitis.
Materials And Methods: Gingival tissues were obtained from 10 periodontitis patients and 10 healthy individuals. Wild-type (WT) and osteoblast-specific Lrp5 conditional knock-out C57BL/6 (LRP5fl/fl;Oc-Cre) mice were used to establish a ligature-induced mouse model of periodontitis.
J Biochem Mol Toxicol
February 2025
Department of Gynecologic Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
TWIST1 is aberrantly expressed in ovarian cancer (OC). MFAP2 is a downstream target of TWIST1, and we previously found MFAP2 facilitated OC development by activating FOXM1/β-catenin. We planned to investigate the mechanisms of TWIST1 in OC.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office; Guangzhou Key Laboratory of Targeted Therapy for Gynecologic Oncology; Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine; The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
Ovarian cancer (OC) is a heterogeneous cancer. In contrast to other tumor cells, which rely primarily on aerobic glycolysis (Warburg effect) as their energy source, oxidative phosphorylation (OXPHOS) is also one of its major metabolic modes. Piwi-interacting RNAs (piRNAs) play a regulatory function in various biological processes in tumor cells.
View Article and Find Full Text PDFCell Mol Biol Lett
January 2025
PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
View Article and Find Full Text PDFAn Acad Bras Cienc
January 2025
Universidade Federal do Pará, Instituto de Ciências Exatas e Naturais, Laboratório de Investigação Sistemática em Biotecnologia e Biodiversidade Molecular, Rua Augusto Corrêa, 01, 66075-110 Belém, PA, Brazil.
In the present study, 5-Hydroxy-2-(Oleoyloxymethyl) -4H-pyran-4-one (KMO 3), and their chelated with Cu(II) and Fe(III) ions were synthesized to explore their inhibitory activity against tyrosinase and cytotoxicity. To this end, the structures of the obtained compounds were confirmed by ATR/FT-IR, 13C and 1H-NMR, and UV-vis techniques. The results show that chelating fatty ester presents the bands at 1567m, 1511w cm-1 attributed to the coordinated carbonyl (Cu(II)←[O=C]2), and the bands at 1540m, 1519m cm-1 which were attributed to the coordinated carbonyl (Fe(III)←[O=C]3).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!