Membrane tension regulates syndecan-1 expression through actin remodelling.

Biochim Biophys Acta Gen Subj

Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK. Electronic address:

Published: November 2019

Background: The endothelial glycocalyx, located at the interface of vascular lumen, is a carbohydrate-rich complex that controls vascular functions such as solute permeation and mechanotransduction. It anchors to the cell membrane through core proteins, e.g. syndecan-1, which couple to the actin cytoskeleton. Membrane tension plays an important role in the reorganisation of membrane-bound proteins, however, little is known on the effect of the membrane tension on the various components of the glycocalyx.

Methods: Hypo-osmotic stress is used to investigate the effect of the membrane tension on syndecan-1 expression.

Results: Following 20 min exposure to hypo-osmotic medium, the expression of syndecan-1 in the endothelial glycocalyx layer is reduced to 84.7 ± 3.6% (255 mOsm) and 64.7 ± 2.1% (167 mOsm). This reduction, however, is transient and partial recovery is observed at the end of 2 h exposure to the hypo-osmotic medium. The transient reduction of syndecan-1 is associated with depolymerisation of the actin cytoskeleton. Further examination of the effect of actin manipulation reveals that actin depolymerisation by cytochalasin D results in sustained syndecan-1 reduction. In contrast, stabilising actin using jasplakinolide abolishes the transient reduction of syndecan-1completely.

Conclusions: We demonstrate, for the first time, that membrane tension plays an important role in the regulation of syndecan-1 expression and this effect is mediated by the reorganisation of the actin cytoskeleton.

General Significance: Findings in this study suggest a new venue of research on the protective role of the glycocalyx in vascular pathophysiology and diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2019.129413DOI Listing

Publication Analysis

Top Keywords

membrane tension
20
syndecan-1 expression
8
endothelial glycocalyx
8
actin cytoskeleton
8
tension plays
8
plays role
8
exposure hypo-osmotic
8
hypo-osmotic medium
8
transient reduction
8
syndecan-1
7

Similar Publications

Highly Tension-Strained Copper Concentrates Diluted Cations for Selective Proton-Exchange Membrane CO2 Electrolysis.

Angew Chem Int Ed Engl

January 2025

University of Science and Technology of China, Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at Microscale, CHINA.

Electrolysis of carbon dioxide (CO2) in acid offers a promising route to overcome CO2 loss in alkaline and neutral electrolytes, but requires concentrated alkali cations (typical ≥3 M) to mitigate the trade-off between low pH and high hydrogen evolution reaction (HER) rate, causing salt precipitation. Here we report a strategy to resolve this problem by introducing tensile strain in a copper (Cu) catalyst, which can selectively reduce CO2 to valuable multicarbon products, particularly ethylene, in a pH 1 electrolyte with 1 M potassium ions. We find that the tension-strained Cu creates an electron-rich surface that concentrates diluted potassium ions, contributing to CO2 activation and HER suppression.

View Article and Find Full Text PDF

Phytochlorin-Based Sonosensitizers Combined with Free-Field Ultrasound for Immune-Sonodynamic Cancer Therapy.

Adv Mater

January 2025

State Key Laboratory of Fine Chemicals, Department of Pharmacy, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.

Phytochlorins, a class of plant-derived tetrapyrroles, show great potential as sonosensitizers in sonodynamic therapy (SDT). The development of new phytochlorin-based sonosensitizers has significantly improved SDT, yet the absence of specialized sonodynamic systems limits their clinical translation. Herein, a dedicated ultrasound system along with a detailed step-by-step sonodynamic process from in vitro to in vivo is developed to activate phytochlorin-based sonosensitizers.

View Article and Find Full Text PDF

Free Energy of Membrane Pore Formation and Stability from Molecular Dynamics Simulations.

J Chem Inf Model

January 2025

Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.

Understanding the molecular mechanisms of pore formation is crucial for elucidating fundamental biological processes and developing therapeutic strategies, such as the design of drug delivery systems and antimicrobial agents. Although experimental methods can provide valuable information, they often lack the temporal and spatial resolution necessary to fully capture the dynamic stages of pore formation. In this study, we present two novel collective variables (CVs) designed to characterize membrane pore behavior, particularly its energetics, through molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Background: Plasma membrane tension-related genes (MTRGs) are known to play a crucial role in tumor progression by influencing cell migration and adhesion. However, their specific mechanisms in bladder cancer (BLCA) remain unclear.

Methods: Transcriptomic, clinical and mutation data from BLCA patients were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!