Scanning ultrasound in the absence of blood-brain barrier opening is not sufficient to clear β-amyloid plaques in the APP23 mouse model of Alzheimer's disease.

Brain Res Bull

Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, 4072, Australia. Electronic address:

Published: November 2019

A major challenge in treating brain diseases is presented by the blood-brain barrier (BBB) that constitutes an efficient barrier not only for toxins but also a wide range of therapeutic agents. In overcoming this impediment, ultrasound in combination with intravenously injected microbubbles has emerged as a powerful technology that allows for the selective brain uptake of blood-borne factors and therapeutic agents by transient opening of the blood-brain barrier. We have previously shown that ultrasound in combination with microbubbles, but in the absence of a therapeutic agent, can effectively clear protein aggregates such as the hallmark lesions of Alzheimer's disease, amyloid-β (Aβ) plaques and Tau-containing neurofibrillary tangles. We have also demonstrated that the associated memory and motor impairments can be ameliorated or even restored. These studies included a negative sham control that received microbubbles in the absence of ultrasound. However, considering that ultrasound on its own is a pressure wave which has bioeffects, the possibility remained that ultrasound, without microbubbles, would also clear amyloid. We addressed this by performing repeated ultrasound only treatments of one brain hemisphere of Aβ-depositing APP23 mice, using the contralateral hemisphere as the unsonicated control. This was followed by an extensive histological analysis of fibrillar and non-fibrillar amyloid. We found that ultrasound on its own was not sufficient to clear amyloid. This implies that although ultrasound on its own has neuromodulatory effects, exogenously supplied microbubbles are required for the clearance of Aβ deposits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresbull.2019.08.002DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
12
sufficient clear
8
alzheimer's disease
8
therapeutic agents
8
ultrasound
8
ultrasound combination
8
microbubbles absence
8
clear amyloid
8
microbubbles
5
scanning ultrasound
4

Similar Publications

The blood-brain-barrier prevents many imaging agents and therapeutics from being delivered to the brain that could fight central nervous system diseases such as Alzheimer's disease and strokes. However, techniques such as the use of stapled peptides or peptide shuttles may allow payloads through, with bioconjugation achieved bio-orthogonal tetrazine/norbornene click chemistry. A series of lanthanide-tetrazine probes have been synthesised herein which could be utilised in bio-orthogonal click chemistry with peptide-based delivery systems to deliver MRI agents through the blood-brain-barrier.

View Article and Find Full Text PDF

Novel multipotent conjugate bearing tacrine and donepezil motifs with dual cholinergic inhibition and neuroprotective properties targeting Alzheimer's disease.

RSC Med Chem

January 2025

Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia

In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.

View Article and Find Full Text PDF

Brain-targeting drug delivery systems: The state of the art in treatment of glioblastoma.

Mater Today Bio

February 2025

Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.

Glioblastoma (GBM) is the most prevalent primary malignant brain tumor, characterized by a high mortality rate and a poor prognosis. The blood-brain barrier (BBB) and the blood-tumor barrier (BTB) present significant obstacles to the efficacy of tumor-targeted pharmacotherapy, thereby impeding the therapeutic potential of numerous candidate drugs. Targeting delivery of adequate doses of drug across the BBB to treat GBM has become a prominent research area in recent years.

View Article and Find Full Text PDF

Even with recent advancements in surgery and multimodal adjuvant therapy, brain cancer treatment is still difficult. The blood-brain barrier and the potentially deadly medications' nonspecificity have made pharmacological treatment for brain cancer particularly ineffective. The nanoparticle has surfaced as a viable brain delivery vector that can solve the issues with existing approaches.

View Article and Find Full Text PDF

Navigating the blood-brain barrier: enhancing blood culture practices in the neuro-ICU.

Infect Control Hosp Epidemiol

January 2025

Division of Infectious Diseases and International Health, Department of Medicine, Duke University School of Medicine, Duke University, Durham, NC, USA.

This study evaluates the implementation of a blood culture (BCx) algorithm in the neurology ICU (NICU) to reduce BCx event (BCE) rates. Results show a reduction in BCE rates, without increasing adverse outcomes. The findings support the feasibility of BCx algorithms for improving diagnostic stewardship in the specialized NICU population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!