Kinetic model optimization and its application to mitigating the Warburg effect through multiple enzyme alterations.

Metab Eng

Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, MN, 55455-0132, USA. Electronic address:

Published: December 2019

Pathway engineering is a powerful tool in biotechnological and clinical applications. However, many phenomena cannot be rewired with a single enzyme change, and in a complex network like energy metabolism, the selection of combinations of targets to engineer is a daunting task. To facilitate this process, we have developed an optimization framework and applied it to a mechanistic kinetic model of energy metabolism. We then identified combinations of enzyme alternations that led to the elimination of the Warburg effect seen in the metabolism of cancer cells and cell lines, a phenomenon coupling rapid proliferation to lactate production. Typically, optimization approaches use integer variables to achieve the desired flux redistribution with a minimum number of altered genes. This framework uses convex penalty terms to replace these integer variables and improve computational tractability. Optimal solutions are identified which substantially reduce or eliminate lactate production while maintaining the requirements for cellular proliferation using three or more enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2019.08.005DOI Listing

Publication Analysis

Top Keywords

kinetic model
8
energy metabolism
8
lactate production
8
integer variables
8
model optimization
4
optimization application
4
application mitigating
4
mitigating warburg
4
warburg multiple
4
multiple enzyme
4

Similar Publications

Dinitrogen Activation: A Novel Approach with P/B Intermolecular FLP.

J Phys Chem A

January 2025

School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.

This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.

View Article and Find Full Text PDF

This study evaluates the potential of ozonated corn starch (OCS) and ultrasonicated ozonated corn starch (USOCS) as adsorbents for patulin removal in buffer solutions. The results indicated that dual modification significantly altered the starch's structure, introducing functional groups such as carbonyl and carboxyl groups, and increasing its surface area. These modifications led to enhanced patulin adsorption capacity.

View Article and Find Full Text PDF

Anti-correlation of LacI association and dissociation rates observed in living cells.

Nat Commun

January 2025

Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.

The rate at which transcription factors (TFs) bind their cognate sites has long been assumed to be limited by diffusion, and thus independent of binding site sequence. Here, we systematically test this assumption using cell-to-cell variability in gene expression as a window into the in vivo association and dissociation kinetics of the model transcription factor LacI. Using a stochastic model of the relationship between gene expression variability and binding kinetics, we performed single-cell gene expression measurements to infer association and dissociation rates for a set of 35 different LacI binding sites.

View Article and Find Full Text PDF

Carbon dioxide capture underpins an important range of technologies that can help to mitigate climate change. Improved carbon capture technologies that are driven by electrochemistry are under active development, and it was recently found that supercapacitor energy storage devices can reversibly capture and release carbon dioxide. So-called supercapacitive swing adsorption (SSA) has several advantages over traditional carbon dioxide capture technologies such as lower energy consumption and the use of nontoxic materials.

View Article and Find Full Text PDF

This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!