Prenatal hypoxia produces memory deficits associated with impairment of long-term synaptic plasticity in young rats.

Neurobiol Learn Mem

Sechenov Institute of Evolutionary Physiology and Biochemistry of RAS (IEPhB), 44, Toreza pr., Saint Petersburg 194223, Russia; Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Street, Saint Petersburg 197341, Russia. Electronic address:

Published: October 2019

Prenatal hypoxia often results in dramatic alterations in developmental profiles and behavioral characteristics, including learning and memory, in later life. Despite the accumulation of considerable amounts of experimental data, the mechanisms underlying developmental deficits caused by prenatal hypoxia remain unclear. In the present study, we investigated whether prenatal hypoxia on embryonic day 14 (E14) affected synaptic properties in the hippocampus and hippocampal-related cognitive functions in young rats. We found that 20- to 30-d-old rats subjected to prenatal hypoxia had significantly disturbed basal synaptic transmission in CA3-CA1 synapses and a two-fold decrease in hippocampal long-term synaptic potentiation. These alterations were accompanied by a significant decline in the protein level of GluN2B but not GluN2A NMDA receptor subunits. In addition, the number of synaptopodin-positive dendritic spines in the CA1 area of the hippocampus was reduced in the rats exposed to prenatal hypoxia. These changes resulted in significant learning and memory deficits in a novel object recognition test.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nlm.2019.107066DOI Listing

Publication Analysis

Top Keywords

prenatal hypoxia
24
memory deficits
8
long-term synaptic
8
young rats
8
learning memory
8
prenatal
6
hypoxia
5
hypoxia produces
4
produces memory
4
deficits associated
4

Similar Publications

Prenatal hypoxia (PH) is a key factor in the development of long-term cardiovascular disorders, which are caused by various mechanisms of endothelial dysfunction (ED), including those associated with NO deficiency. This emphasizes the potential of therapeutic agents with NO modulator properties, such as Thiotriazoline, Angiolin, Mildronate, and L-arginine, in the treatment of PH. Pregnant female rats were given a daily intraperitoneal dose of 50 mg/kg of sodium nitrite starting on the 16th day of pregnancy.

View Article and Find Full Text PDF

Prenatal PM exposure affects embryonic hematopoietic development through SOX2-regulated gene expression.

J Hazard Mater

January 2025

Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan 030006, China. Electronic address:

Fine particulate matter (PM) is one of the most concerning air pollutants, with emerging evidence indicating that it can negatively impact embryonic development and lead to adverse birth outcomes. Hematopoiesis is a critical process essential for the survival and normal development of the embryo, consisting of three temporally overlapping stages and involving multiple hematopoietic loci, including the yolk sac and fetal liver. Therefore, we hypothesized that abnormal embryonic hematopoietic development can significantly influence developmental outcomes.

View Article and Find Full Text PDF

Acute maternal hyperoxygenation to predict hypoxia and need for emergency intervention in fetuses with transposition of the great arteries: a pilot study.

J Am Soc Echocardiogr

January 2025

Department of Congenital Heart Disease, Evelina London Children's Hospital, Guy's & St Thomas' NHS Trust, Westminster Bridge Road, London SE1 7EH, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.

Background: Newborns with transposition of the great arteries (TGA) are at risk of severe hypoxia from inadequate atrial mixing, closure of the arterial duct and/or pulmonary hypertension (PPHN). Acute maternal hyperoxygenation (AMH) might assist in identifying at-risk fetuses. We report pulmonary vasoreactivity to AMH in TGA fetuses and its relationship to early postnatal hypoxia and requirement for emergency balloon atrial septostomy (e-BAS).

View Article and Find Full Text PDF

Prenatal hypoxia, often accompanied by maternal glucocorticoid stress, can predispose offspring to neurological disorders in adulthood. If placental ischemia (PI) primarily reduces fetal oxygen supply, the maternal hypoxia (MH) model also elicits a pronounced fetal glucocorticoid exposure. Here, we compared MH and PI in rats to distinguish their unique and overlapping effects on embryonic and newborn brain development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!