Limbal stem cell deficiency (LSCD) is the loss of limbal stem cells that reside in the corneoscleral junction resulting in vision loss or blindness. Bilateral LSCD is usually treated by allogeneic corneal transplantation, with instances of tissue rejection or failure in long-term follow-up. This study aims to use adipose mesenchymal stem cells (ASC) as an alternative autologous cell source for treating bilateral limbal deficiency conditions. ASCs derived from rabbit fat tissue were differentiated into corneal epithelial lineage using limbal explant condition media. Apart from transdifferentiation, ASC sheets were developed to facilitate effective delivery of these cells to the damage site. A thermoresponsive polymer N-isopropylacrylamide-co-glycidylmethacrylate (NGMA) was synthesized and characterized to demonstrate ASC sheet formation. Transdifferentiated ASCs showed positive expression of corneal epithelial marker CK3/12 on immunostaining, supported by gene expression studies. in vivo studies by transplanting cell sheet in rabbit models of corneal injury showed clear and smooth cornea in comparison to the sham models. Histology revealed a sheet of cells aligned and integrated on to the injured corneal surface, 1 month posttransplantation. Identifying ASCs as an alternative cell source along with cell sheet technology will be a novel step in the field of corneal surface therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.34455DOI Listing

Publication Analysis

Top Keywords

corneal epithelial
12
cell sheet
12
limbal stem
12
stem cells
12
mesenchymal stem
8
cell source
8
corneal surface
8
cell
6
corneal
6
sheet
5

Similar Publications

We describe a novel technique for recurrent pterygium and assess the advantage of properties of extended tenonectomy, amniotic membrane transplantation, and limbal epithelial transplantation in terms of recurrence rate, postoperative symptoms, postoperative orthoptics, and other complications. A total of nine eyes with recurrent pterygium underwent PERMISLET, i.e.

View Article and Find Full Text PDF

Background: Increased reactive oxygen species (ROS) are involved in the pathological process of dry eye disease. Our previous results suggested that norepinephrine (NE) has a protective effect on dry eye.

Purpose: This study explored the potential therapeutic role and underlying mechanisms of NE in benzalkonium chloride (BAC)-induced dry eye disease.

View Article and Find Full Text PDF

ROS scavenging and corneal epithelial wound healing by a self-crosslinked tissue-adhesive hydrogel based-on dual-functionalized hyaluronic acid.

Int J Biol Macromol

December 2024

National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China; State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China. Electronic address:

Reactive oxygen species (ROS) scavenging is a viable approach to promote corneal epithelium wound healing. This study created a single-component hydrogel (HA Gel) with a novel dual-functionalized hyaluronic acid derivative (HA-GA-PBA) containing gallol and phenylboronic acid (PBA) moieties. Both of these moieties were dual-functional.

View Article and Find Full Text PDF

Objectives: To demonstrate corneal remodeling after corneal allograft intrastromal ring segment (CAIRS) with an anterior-segment optical coherence tomography (AS-OCT).

Design: A prospective observational single-center study.

Methods: This observational study included keratoconus patients who underwent CAIRS implantation into a stromal tunnel.

View Article and Find Full Text PDF

Cornea tissue engineering is strictly dependent on the development of biomaterials that fulfill the strict biocompatibility, biomechanical, and optical requirements of this organ. In this work, we generated novel biomaterials from the squid gladius (SG), and their application in cornea tissue engineering was evaluated. Results revealed that the native SG (N-SG) was biocompatible in laboratory animals, although a local inflammatory reaction was driven by the material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!