The detrimental effects of synthetic fungicides have increased the emphasis for biological control as an effective and safe sustainable alternative method. In the present work, a potent rhizospheric actinobacterium MR14 showed broad spectrum antifungal and plant growth promoting activities indicating the potential to fulfill the need. Phylogenetic analysis confirmed that the isolate could be assigned as new species of the Streptomyces, coded as Streptomyces sp. MR14. It formed clade with Streptomyces daghestanicus but with very low bootstrap value (14%). The MR14 supernatant showed potent antagonistic activity against 13 different tested fungal phytopathogens. The most and least sensitive fungal phytopathogens were found to be Pyricularia oryzae and Fusarium oxysporum with inhibition zones of 31 mm and 11 mm, respectively. The antifungal metabolites produced by strain MR14 were thermostable, photostable, and remained active at extreme acidic and neutral pH. In pot experiments, the Streptomyces sp. MR14 cells, supernatant and extract significantly suppressed Fusarium wilt caused by Fusarium moniliforme in tomato plants. Various growth parameters such as shoot and root lengths, and plant fresh and dry weights were significantly enhanced by 19.65 to 321.62% over the pathogen infested plants only. The treatment with culture cells/supernatant/extract in the rhizosphere soil also reduced the microbial count as compared to control. In addition, the strain also possessed plant growth promoting potential which was indicated by the increase in various agronomic traits from 3.64 to 116.88%. This study provided a scientific validation that the new rhizobacterium Streptomyces sp. MR14 could be further developed as bioformulation, exhibiting biocontrol and plant growth promoting capabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689040 | PMC |
http://dx.doi.org/10.1186/s13568-019-0849-7 | DOI Listing |
J Exp Bot
January 2025
Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy.
Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.
View Article and Find Full Text PDFJ Plant Res
January 2025
College of Marine and Biological Engineering, Yancheng Institute of Technology, Yancheng, 224002, Jiangsu, China.
Barley (Hordeum vulgare L.) is an important cereal crop used in animal feed, beer brewing, and food production. Waterlogging stress is one of the prominent abiotic stresses that has a significant impact on the yield and quality of barley.
View Article and Find Full Text PDFBot Stud
January 2025
Crop Science Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung, 413, Taiwan.
Background: Rice is a staple food for the global population. However, extreme weather events threaten the stability of the water supply for agriculture, posing a critical challenge to the stability of the food supply. The use of technology to assess the water status of rice plants enables the precise management of agricultural water resources.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Field Crops, Faculty of Agriculture, Necmettin Erbakan University, Konya, 42310, Türkiye.
Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!