Disentangling the strong interplay between electronic and nuclear degrees of freedom is essential to achieve a full understanding of excited state processes during ultrafast nonadiabatic chemical reactions. However, the complexity of multi-dimensional potential energy surfaces means that this remains challenging. The energy flow during vibrational and electronic relaxation processes can be explored with structural sensitivity by probing a nuclear wavepacket using femtosecond time-resolved X-ray Absorption Near Edge Structure (TR-XANES). However, it remains unknown to what level of detail vibrational motions are observable in this X-ray technique. Herein we track the wavepacket dynamics of a prototypical [Cu(2,9-dimethyl-1,10-phenanthroline)] complex using TR-XANES. We demonstrate that sensitivity to individual wavepacket components can be modulated by the probe energy and that the bond length change associated with molecular breathing mode can be tracked with a sub-Angstrom resolution beyond optical-domain observables. Importantly, our results reveal how state-of-the-art TR-XANES provides deeper insights of ultrafast nonadiabatic chemical reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689108PMC
http://dx.doi.org/10.1038/s41467-019-11499-wDOI Listing

Publication Analysis

Top Keywords

nuclear wavepacket
8
ultrafast nonadiabatic
8
nonadiabatic chemical
8
chemical reactions
8
tracking multiple
4
multiple components
4
components nuclear
4
wavepacket
4
wavepacket photoexcited
4
photoexcited cui-phenanthroline
4

Similar Publications

Conjugated diene molecules are highly reactive upon photoexcitation and can relax through multiple reaction channels that depend on the position of the double bonds and the degree of molecular rigidity. Understanding the photoinduced dynamics of these molecules is crucial for establishing general rules governing the relaxation and product formation. Here, we investigate the femtosecond time-resolved photoinduced excited-state structural dynamics of ,-1,3-cyclooctadiene, a large-flexible cyclic conjugated diene molecule, upon excitation with 200 nm using mega-electron-volt ultrafast electron diffraction and trajectory surface hopping dynamics simulations.

View Article and Find Full Text PDF

Jahn-Teller Effect on CFI Photodissociation Dynamics.

J Chem Theory Comput

December 2024

State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China.

The Jahn-Teller (JT) effect, as a spontaneous symmetry-breaking mechanism arising from the coupling between electronic and nuclear degrees of freedom, is a widespread phenomenon in molecular and condensed matter systems. Here, we investigate the influence of the JT effect on the photodissociation dynamics of CFI molecules. Based on ab initio calculation, we obtain the three-dimensional potential energy surfaces for and states and establish a diabatic Hamiltonian model to study the wavepacket dynamics in the CFI photodissociation process.

View Article and Find Full Text PDF

Quantum nuclear dynamics with wavepacket time evolution is classically intractable and viewed as a promising avenue for quantum information processing. Here, we use IonQ, Inc.'s 11-qubit trapped-ion quantum computer, Harmony, to study the quantum wavepacket dynamics of a shared-proton within a short-strong hydrogen-bonded system.

View Article and Find Full Text PDF

Attosecond Probing of Coherent Vibrational Dynamics in CBr.

J Phys Chem A

October 2024

Department of Chemistry, University of California, Berkeley, California 94720, United States.

A coherent vibrational wavepacket is launched and manipulated in the symmetric stretch (a) mode of CBr, by impulsive stimulated Raman scattering (ISRS) from nonresonant 400 nm laser pump pulses with various peak intensities on the order of tens of 10 W/cm. Extreme ultraviolet (XUV) attosecond transient absorption spectroscopy (ATAS) records the wavepacket dynamics as temporal oscillations in XUV absorption energy at the bromine M 3d edges around 70 eV. The results are augmented by nuclear time-dependent Schrödinger equation simulations.

View Article and Find Full Text PDF

Emergence of the Molecular Geometric Phase from Exact Electron-Nuclear Dynamics.

J Phys Chem Lett

October 2024

Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt/Main, Germany.

Geometric phases play a crucial role in diverse fields. In molecules, they appear when a reaction path encircles an intersection between adiabatic potential energy surfaces and the molecular wave function experiences quantum-mechanical interference effects. This intriguing effect, closely resembling the magnetic Aharonov-Bohm effect, crucially relies on the adiabatic description of the dynamics, and it is an open issue whether and how it persists in an exact quantum dynamical framework.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!