Background: The current study investigates the effect of bronchoscopy-guided percutaneous dilatational tracheostomy (PDT) on the evolution of respiratory acidosis depending on endotracheal tube (ET) sizes. In addition, the impact of increasing tidal volumes during the intervention was investigated.
Methods: Two groups of ICU-patients undergoing bronchoscopy-guided PDT with varying tidal volumes and tube sizes were consecutively investigated: 6 ml/kg (N = 29, mean age 57.4 ± 14.5 years) and 12 ml/kg predicted body weight (N = 34, mean age 59.5 ± 12.8 years).
Results: The mean intervention time during all procedures was 10 ± 3 min. The combination of low tidal volumes and ETs of 7.5 mm internal diameter resulted in the most profound increase in PaCO (32.2 ± 11.6 mmHg) and decrease in pH-value (- 0.18 ± 0.05). In contrast, the combination of high tidal volumes and ETs of 8.5 mm internal diameter resulted in the least profound increase in PaCO (8.8 ± 9.0 mmHg) and decrease of pH (- 0.05 ± 0.04). The intervention-related increase in PaCO was significantly lower when using higher tidal volumes for larger ET: internal diameter 7.5, 8.0 and 8.5: P > 0.05, =0.006 and = 0.002, respectively. Transcutaneous PCO monitoring revealed steadily worsening hypercapnia during the intervention with a high correlation of 0.87 and a low bias of 0.7 ± 9.4 mmHg according to the Bland-Altman analysis when compared to PaCO measurements.
Conclusions: Profound respiratory acidosis following bronchoscopy-guided PDT evolves in a rapid and dynamic process. Increasing the tidal volume from 6 to 12 ml/kg PBW was capable of attenuating the evolution of respiratory acidosis, but this effect was only evident when using larger ETs.
Trial Registration: DRKS00011004 . Registered 20th September 2016.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6689167 | PMC |
http://dx.doi.org/10.1186/s12871-019-0824-5 | DOI Listing |
Sci Rep
December 2024
Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.
Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.
View Article and Find Full Text PDFCureus
November 2024
Anesthesiology and Critical Care, Kindai University Faculty of Medicine, Osaka, JPN.
Background: Epiglottic masses are often asymptomatic, making them difficult to detect during preoperative examinations. Consequently, anesthesiologists may face ventilation difficulties with no apparent cause. Epiglottic masses can sometimes obstruct laryngoscope insertion into the epiglottic vallecula, complicating general anesthesia induction.
View Article and Find Full Text PDFDevice
December 2024
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716.
Modeling aerosol dynamics in the airways is challenging, and most modern personalized tools consider only a single inhalation maneuver through less than 10% of the total lung volume. Here, we present an modeling pipeline to produce a device that preserves patient-specific upper airways while approximating deeper airways, capable of achieving total lung volumes over 7 liters. The modular system, called TIDAL, includes tunable inhalation and exhalation breathing capabilities with resting flow rates up to 30 liters per minute.
View Article and Find Full Text PDFRespir Res
December 2024
Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC, Australia.
By virtue of applying small tidal volumes, high-frequency ventilation is advocated as a method of minimizing ventilator-induced lung injury. Lung protective benefits are established in infants, but not in other patient cohorts. Efforts to improve and extend the lung protection potential should consider how fundamental modes of gas transport can be exploited to minimize harmful tidal volumes while maintaining or improving ventilation.
View Article and Find Full Text PDFCrit Care
December 2024
Department of Anesthesia and Intensive Care Unit, Regional University Hospital of Montpellier, St-Eloi Hospital, PhyMedExp, INSERM U1046, CNRS UMR, University of Montpellier, 9214, Montpellier Cedex 5, France.
Background: Ultra-protective ventilation is the combination of low airway pressures and tidal volume (Vt) combined with extra corporeal carbon dioxide removal (ECCOR). A recent large study showed no benefit of ultra-protective ventilation compared to standard ventilation in ARDS (Acute Respiratory Distress Syndrome) patients. However, the reduction in Vt failed to achieve the objective of less than or equal to 3 ml/kg predicted body weight (PBW).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!