Enzyme Entrapment in Amphiphilic Myristyl-Phenylalanine Hydrogels.

Molecules

Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, M5S 3E5, Toronto, Canada.

Published: August 2019

Supramolecular amino acid and peptide hydrogels are functional materials with a wide range of applications, however, their ability to serve as matrices for enzyme entrapment have been rarely explored. Two amino acid conjugates were synthesized and explored for hydrogel formation. These hydrogels were characterized in terms of strength and morphology, and their ability to entrap enzymes while keeping them active and reusable was explored. It was found that the hydrogels were able to successfully entrap two common and significant enzymes-horseradish peroxidase and -amylase-thus keeping them active and stable, along with inducing recycling capabilities, which has potential to further advance the industrial biotransformation field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721053PMC
http://dx.doi.org/10.3390/molecules24162884DOI Listing

Publication Analysis

Top Keywords

enzyme entrapment
8
amino acid
8
keeping active
8
entrapment amphiphilic
4
amphiphilic myristyl-phenylalanine
4
hydrogels
4
myristyl-phenylalanine hydrogels
4
hydrogels supramolecular
4
supramolecular amino
4
acid peptide
4

Similar Publications

In the current study, calcium alginate was used as a carrier for Agaricus bisporus CU13 laccase immobilization, with an immobilization yield of the entrapped laccase of 91.95%. Free and immobilized enzymes showed their best enzyme activity at 60 °C as an optimum temperature.

View Article and Find Full Text PDF

Surface enzyme-polymerization endows Janus hydrogel tough adhesion and regenerative repair in penetrating orocutaneous fistulas.

Nat Commun

December 2024

Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.

Penetrating orocutaneous or oropharyngeal fistulas (POFs), severe complications following unsuccessful oral or oropharyngeal reconstruction, remain complex clinical challenges due to lack of supportive tissue, contamination with saliva and chewed food, and dynamic oral environment. Here, we present a Janus hydrogel adhesive (JHA) with asymmetric functions on opposite sides fabricated via a facile surface enzyme-initiated polymerization (SEIP) approach, which self-entraps surface water and blood within an in-situ formed hydrogel layer (RL) to effectively bridge biological tissues with a supporting hydrogel (SL), achieving superior wet-adhesion and seamless wound plugging. The tough SL hydrogel interlocked with RL dissipates energy to withstand external mechanical stimuli from continuous oral motions like chewing and swallowing, thus reducing stress-induced damage.

View Article and Find Full Text PDF

Background And Objectives: The study focused on the amylase enzyme, widely used in the industrial starch liquefaction process. We looked into the best way to immobilize the native strain , which is the only alpha-amylase-producing bacterium, by trapping it in calcium alginate gel. This is a promising way to increase enzyme output.

View Article and Find Full Text PDF

The continuous exposure of chemical pesticides in agriculture, their contamination in soil and water pose serious threat to the environment. Current study used an approach to evaluate various pesticides like Hexaconazole, Mancozeb, Pretilachlor, Organophosphate and λ-cyhalothrin degradation capability of esterase. The enzyme was isolated from Salinicoccus roseus.

View Article and Find Full Text PDF

Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline.

Biosensors (Basel)

November 2024

Department of BioNano Technology, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam 13120, Republic of Korea.

Choline is an important molecule in monitoring food safety and infant nutrition. Here, we report Ce nanogels synthesized by atom transfer radical polymerization (ATRP) employing Ce-coordinated acryloyl-lysine polymer brushes (Ce@SiO NGs) as highly efficient cascade nanozymes for colorimetric detection of choline. The synthesized Ce@SiO NGs demonstrated remarkable peroxidase-like activity with a porous exterior, which are essential to entrap choline oxidase (COx) to yield COx@Ce@SiO NGs and construct a cascade reaction system to detect choline.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!