NLOS Identification and Mitigation Using Low-Cost UWB Devices.

Sensors (Basel)

Universidade da Coruña (University of A Coruña), CITIC Research Center, Campus de Elviña, 15071 A Coruña, Spain.

Published: August 2019

Indoor location systems based on ultra-wideband (UWB) technology have become very popular in recent years following the introduction of a number of low-cost devices on the market capable of providing accurate distance measurements. Although promising, UWB devices also suffer from the classic problems found when working in indoor scenarios, especially when there is no a clear line-of-sight (LOS) between the emitter and the receiver, causing the estimation error to increase up to several meters. In this work, machine learning (ML) techniques are employed to analyze several sets of real UWB measurements, captured in different scenarios, to try to identify the measurements facing non-line-of-sight (NLOS) propagation condition. Additionally, an ulterior process is carried out to mitigate the deviation of these measurements from the actual distance value between the devices. The results show that ML techniques are suitable to identify NLOS propagation conditions and also to mitigate the error of the estimates when there is LOS between the emitter and the receiver.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6721141PMC
http://dx.doi.org/10.3390/s19163464DOI Listing

Publication Analysis

Top Keywords

uwb devices
8
los emitter
8
emitter receiver
8
nlos propagation
8
nlos identification
4
identification mitigation
4
mitigation low-cost
4
uwb
4
low-cost uwb
4
devices
4

Similar Publications

A parallelized field-programmable gate array (FPGA) architecture is proposed to realize an ultra-fast, compact, and low-cost dual-channel ultra-wideband (UWB) pulsed-radar system. This approach resolves the main shortcoming of current FPGA-based radars, namely their low processing throughput, which leads to a significant loss of data provided by the radar receiver. The architecture is integrated with an in-house UWB pulsed radar operating at a sampling rate of 20 gigasamples per second (GSa/s).

View Article and Find Full Text PDF

Radar-Based Heart Cardiac Activity Measurements: A Review.

Sensors (Basel)

November 2024

Águeda School of Technology and Management (ESTGA), Instituto de Telecomunicações, Universidade de Aveiro, 3750-127 Águeda, Portugal.

In recent years, with the increased interest in smart home technology and the increased need to remotely monitor patients due to the pandemic, demand for contactless systems for vital sign measurements has also been on the rise. One of these kinds of systems are Doppler radar systems. Their design is composed of several choices that could possibly have a significant impact on their overall performance, more specifically those focused on the measurement of cardiac activity.

View Article and Find Full Text PDF

"Smart" devices, such as contemporary smartphones and PDAs (Personal Digital Assistance), play a significant role in our daily live, be it for navigation or location-based services (LBSs). In this paper, the use of Ultra-Wide Band (UWB) and Wireless Fidelity (Wi-Fi) based on RTT (Round-Trip Time) measurements is investigated for pedestrian user localization. For this purpose, several scenarios are designed either using real observation or simulated data.

View Article and Find Full Text PDF
Article Synopsis
  • The paper introduces a novel metamaterial absorber design using a bent Y-shaped structure on an FR-4 substrate with copper, achieving over 90% absorption across a range of frequencies from L-band to K-band (3.728 GHz to 22.664 GHz).
  • Through simulations, it identifies eight resonant frequencies, highlighting the design's versatility for reducing electromagnetic radiation.
  • Additionally, the research discusses the implications of near-zero refractive index metamaterials and their potential for advanced wave control, emphasizing the absorber's polarization insensitivity and unique electromagnetic properties that challenge existing theories.
View Article and Find Full Text PDF

This work presents a small four-port multiple-input multiple-output (MIMO) antenna for Ultra Wideband (UWB) applications. Four monopole radiating components make up the suggested antenna. Every monopole is positioned perpendicularly to the components that surround it.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!