Highly sensitive bioaffinity electrochemiluminescence sensors: Recent advances and future directions.

Biosens Bioelectron

Department of Chemistry, University of Kurdistan, 66177-15175, Sanandaj, Iran; Research Center for Nanotechnology, University of Kurdistan, 66177-15175, Sanandaj, Iran; Department of Chemistry, University of Western Ontario, N6A 5B7, London, Ontario, Canada. Electronic address:

Published: October 2019

Electrogenerated chemiluminescence (also called electrochemiluminescence and abbreviated ECL) has attracted much attention in various fields of analysis due to the potential remarkably high sensitivity, extremely wide dynamic range and excellent controllability. Electrochemiluminescence biosensor, by taking the advantage of the selectivity of the biological recognition elements and the high sensitivity of ECL technique was applied as a powerful analytical device for ultrasensitive detection of biomolecule. In this review, we summarize the latest sensing applications of ECL bioanalysis in the field of bio affinity ECL sensors including aptasensors, immunoassays and DNA analysis, cytosensor, molecularly imprinted sensors, ECL resonance energy transfer and ratiometric biosensors and give future perspectives for new developments in ECL analytical technology. Furthermore, the results herein discussed would demonstrate that the use of nanomaterials with unique chemical and physical properties in the ECL biosensing systems is one of the most interesting research lines for the development of ultrasensitive electrochemiluminescence biosensors. In addition, ECL based sensing assays for clinical samples analysis and medical diagnostics and developing of immunosensors, aptasensors and cytosensor for this purpose is also highlighted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2019.111530DOI Listing

Publication Analysis

Top Keywords

ecl
8
high sensitivity
8
highly sensitive
4
sensitive bioaffinity
4
electrochemiluminescence
4
bioaffinity electrochemiluminescence
4
electrochemiluminescence sensors
4
sensors advances
4
advances future
4
future directions
4

Similar Publications

Luminol is a well-known electrochemiluminescence (ECL) fluorophore that is applied in various sensing fields as an ECL reporter. Regulating the signal off/on transition of an ECL fluorophore offers great opportunities for sensors' design; however, such attempts on luminol are extremely scarce as it was regarded to lack promising modification sites. In this study, we developed four luminol derivatives with modification at the amine site and the enol site and systematically explored possible caging strategies to regulate ECL emission.

View Article and Find Full Text PDF

Highly sensitive aggregation-induced electrochemiluminescence sensor for cadmium detection in Ganoderma lucidum.

Food Chem

December 2024

School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China. Electronic address:

Cadmium (Cd) pollution poses a major threat to food safety. Sensitive detection of Cd is of great significance for the life health. Herein, an aggregation-induced electrochemiluminescence (AIECL) sensor based on polymer dots (Pdots) is designed for Cd detection.

View Article and Find Full Text PDF

Clinical Evaluation of the HER2 Extracellular Domain in Breast Cancer Patients by Herceptin-Encapsulated Gold Nanocluster Probe-Based Electrochemiluminescence Immunoassay.

Anal Chem

December 2024

Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350122, China.

The extracellular domain (ECD) of human epidermal growth factor receptor 2 (HER2) serves as a promising biomarker for the early diagnosis and treatment of breast cancer (BC). However, due to the heterogeneity of tumors, assessing HER2 status through a core needle biopsy presents significant challenges. In this study, we propose a facile and high-performance electrochemiluminescence immunoassay (ECLIA) platform utilizing a herceptin-encapsulated gold nanoclusters (HER-AuNCs)/(diisopropylamino)ethanol (DIPEA-OH) ECL system for the clinical evaluation of HER2 ECD in BC patients.

View Article and Find Full Text PDF

An electrochemiluminescence biosensor based on silver-cysteine nanorod as an emitter and AgNP-decorated FeMoO as a signal amplifier for sensitive detection of heart-type fatty acid binding protein.

Mikrochim Acta

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin.

View Article and Find Full Text PDF

Electrochemiluminescence (ECL) is nowadays a powerful technique widely used in biosensing and imaging, offering high sensitivity and specificity for detecting and mapping biomolecules. Screen-printed electrodes (SPEs) offer a versatile and cost-effective platform for ECL applications due to their ease of fabrication, disposability, and suitability for large-scale production. This research introduces a novel method for improving the ECL characteristics of screen-printed carbon electrodes (SPCEs) through the application of CO laser treatment following fabrication.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!