Niclosamide is an antihelminthic drug used worldwide for the treatment of tapeworm infections. Recent drug repurposing screens have highlighted the broad bioactivity of niclosamide across diverse mechanisms of action. As a result, niclosamide is being evaluated for a range of alternative drug-repurposing applications, including the treatment of cancer, bacterial infections, and Zika virus. As new applications of niclosamide will require non-oral delivery routes that may lead to exposure in utero, it is important to understand the mechanism of niclosamide toxicity during early stages of embryonic development. Previously, we showed that niclosamide induces a concentration-dependent delay in epiboly progression in the absence of effects on oxidative phosphorylation - a well-established target for niclosamide. Therefore, the overall objective of this study was to further examine the mechanism of niclosamide-induced epiboly delay during zebrafish embryogenesis. Based on this study, we found that (1) niclosamide exposure during early zebrafish embryogenesis resulted in a decrease in yolk sac integrity with a concomitant decrease in the presence of yolk sac actin networks and increase in cell size; (2) within whole embryos, niclosamide exposure did not alter non-polar metabolites and lipids, but significantly altered amino acids specific to aminoacyl-tRNA biosynthesis; (3) niclosamide significantly altered transcripts related to translation, transcription, and mRNA processing pathways; and (4) niclosamide did not significantly alter levels of rRNA and tRNA. Overall, our findings suggest that niclosamide may be causing a systemic delay in embryonic development by disrupting the translation of maternally-supplied mRNAs, an effect that may be mediated through disruption of aminoacyl-tRNA biosynthesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717554PMC
http://dx.doi.org/10.1016/j.taap.2019.114699DOI Listing

Publication Analysis

Top Keywords

niclosamide
13
target niclosamide
8
embryonic development
8
zebrafish embryogenesis
8
niclosamide exposure
8
yolk sac
8
aminoacyl-trna biosynthesis
8
maternal-to-zygotic transition
4
transition potential
4
potential target
4

Similar Publications

- The objective of the study was to tackle the recurrence of PCa post-surgery and to re-sensitize the DTX-resistant PC-3 cells to chemo-therapy using NIC. Prolonged docetaxel (DTX) therapy leads to the emergence of chemo-resistance by overexpression of PI3K-AKT pathway in PCa along with tumor recurrence post-surgery. Suppression of this pathway could be essential in improving the anticancer activity of DTX and re-sensitizing the resistant cells.

View Article and Find Full Text PDF

Hypoxia-tolerant polymeric photosensitizer prodrug for cancer photo-immunotherapy.

Nat Commun

January 2025

National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, PR China.

Although photodynamic immunotherapy represents a promising therapeutic approach against malignant tumors, its efficacy is often hampered by the hypoxia and immunosuppressive conditions within the tumor microenvironment (TME) following photodynamic therapy (PDT). In this study, we report the design guidelines towards efficient Type-I semiconducting polymer photosensitizer and modify the best-performing polymer into a hypoxia-tolerant polymeric photosensitizer prodrug (HTPS) for cancer photo-immunotherapy. HTPS not only performs Type-I PDT process to partially overcome the limitation of hypoxic tumors in PDT by recycling oxygen but also specifically releases a Signal Transducer and Activator of Transcription-3 (STAT3) inhibitor (Niclosamide) in response to a cancer biomarker in the TME.

View Article and Find Full Text PDF

Purpose: This study aimed to develop a solid self-nanoemulsifying drug delivery system (SNEDDS) and surface-coated microspheres to improve the oral bioavailability of niclosamide.

Methods: A solubility screening study showed that liquid SNEDDS, prepared using an optimized volume ratio of corn oil, Cremophor RH40, and Tween 80 (20:24:56), formed nanoemulsions with the smallest droplet size. Niclosamide was incorporated into this liquid SNEDDS and spray-dried with calcium silicate to produce solid SNEDDS.

View Article and Find Full Text PDF

RNA-binding protein HuR regulates the transition of septic AKI to CKD by modulating CD147.

Clin Sci (Lond)

January 2025

Division of Nephrology & Hypertension, Department of Internal Medicine, University of Utah Health Science, Salt Lake City, UT, USA.

Septic acute kidney injury (AKI) is an important risk factor for developing chronic kidney disease (CKD). Hu antigen R (HuR) is recognized as a crucial modulator in inflammation. We hypothesized that elevated HuR contributes to the transition from septic AKI to CKD by promoting persistent inflammation and fibrosis, and inhibition of HuR may reverse septic kidney injury.

View Article and Find Full Text PDF

A novel sustained-release agent based on disulfide-induced recombinant collagen hydrogels for the prevention and treatment of infections.

Microbiol Spectr

December 2024

Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, China.

Schistosomiasis is commonly managed using the praziquantel, but it is only effective against adult worms and duration of action is short. Liver fibrosis will worsen if eggs are still present after stopping treatment. Therefore, this study aimed to develop a sustained drug release system for effectively preventing and treating schistosomiasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!