Protective effects of catalpol on diabetes mellitus-induced male reproductive damage via suppression of the AGEs/RAGE/Nox4 signaling pathway.

Life Sci

Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China. Electronic address:

Published: September 2020

Aims: Diabetes mellitus (DM)-induced reproductive damage is an important cause of infertility for male DM patients, we herein evaluated the effects of catalpol on diabetic reproductive damage through the suppression of the AGEs/RAGE/Nox4 signaling pathway.

Methods: KK-Ay diabetic reproductive damage mice were administered with catalpol for 8 weeks, the testis/body weight ratio, testicular histopathology, the levels of endogenous hormone and the activity of testicular marker enzymes were determined. In vitro, the GC-2 cell injury model was induced by advanced glycation end-products (AGEs) and pretreated with catalpol. Cell viability, apoptosis, and oxidative stress markers were detected and the mechanism based on the AGEs/RAGE/Nox4 pathway was explored.

Key Findings: Catalpol showed remarkable capacity on protecting diabetic reproductive damage by improving the histomorphology of the testes, increasing the testis/body weight ratio and activity of acid phosphatase (ACP), lactate dehydrogenase (LDH), gamma-glutamyl transferase (γ-GT). The reduced testosterone (T), luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels in DM mice were also reversed with catalpol intervention. Moreover, catalpol showed markedly effects of anti-oxidative in vivo and in vitro, which significantly down-regulated reactive oxygen species (ROS) levels and restored superoxide dismutase (SOD) activity, meanwhile decreased GC-2 cell apoptosis and Bax/Bcl-2 ratio. Moreover, the over-expression of receptors for AGEs (RAGE), NADPH oxidase type 4 (Nox4) and phosphorylation of nuclear transcription factor-κB p65 (NF-κB p65) were suppressed by catalpol.

Significance: Catalpol could alleviate DM-induced male reproductive damage by inhibiting oxidative stress-induced apoptosis and inflammation mediated by AGEs/RAGE/Nox4 signaling pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2019.116736DOI Listing

Publication Analysis

Top Keywords

reproductive damage
24
ages/rage/nox4 signaling
12
diabetic reproductive
12
catalpol
8
effects catalpol
8
male reproductive
8
damage suppression
8
suppression ages/rage/nox4
8
signaling pathway
8
testis/body weight
8

Similar Publications

Mechanisms of Neurosyphilis-Induced Dementia: Insights into Pathophysiology.

Neurol Int

December 2024

Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Miami Miller, Miami, FL 33136, USA.

Neurosyphilis-induced dementia represents a severe manifestation of tertiary syphilis, characterized by cognitive and neuropsychiatric impairments. This condition arises from the progression of syphilis to the central nervous system, where the spirochete causes damage through invasion, chronic inflammation, and neurodegeneration. The pathophysiology involves chronic inflammatory responses, direct bacterial damage, and proteinopathies.

View Article and Find Full Text PDF

Reproductive Health in Women with Major β-Thalassemia: Evaluating Ovarian Reserve and Endocrine Complications.

Metabolites

December 2024

IVF Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece.

Thalassemia is an autosomal recessive hereditary chronic hemolytic anemia characterized by a partial or complete deficiency in the synthesis of alpha- or beta-globin chains, which are essential components of adult hemoglobin. Mutations in the globin genes lead to the production of unstable globin chains that precipitate within cells, causing hemolysis. This shortens the lifespan of mature red blood cells (RBCs) and results in the premature destruction of RBC precursors in the bone marrow.

View Article and Find Full Text PDF

The growing use of products containing rare earth elements (REEs) may lead to higher environmental emissions of these elements, which can potentially enter aquatic systems. Praseodymium (Pr) and europium (Eu) are widely used REEs with various applications. However, their ecotoxicological impacts remain largely unexplored, with poorly understood risks to wildlife.

View Article and Find Full Text PDF

Biocontrol techniques that impair reproductive capacity of insect pests provide opportunities to control the dynamics of their populations while minimizing collateral damage to non-target species and the environment. The Trojan Female Technique, or TFT, is a method of the trans-generational fertility-based population control through the release of females that carry mitochondrial DNA mutations that negatively affect male, but not female, reproductive output. TFT is based on the evolutionary hypothesis that, due to maternal inheritance of mitochondria, mutations which are beneficial or neutral in females but harmful in males can accumulate in the mitochondrial genome without selection acting against them.

View Article and Find Full Text PDF

Targeting oxidative stress in preeclampsia.

Hypertens Pregnancy

December 2025

School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.

Preeclampsia is a complex condition characterized by elevated blood pressure and organ damage involving kidneys or liver, resulting in significant morbidity and mortality for both the mother and the fetus. Increasing evidence suggests that oxidative stress, often caused by mitochondrial dysfunction within fetal trophoblast cells may play a major role in the development and progression of preeclampsia. Oxidative stress occurs as a result of an imbalance between the production of reactive oxygen species (ROS) and the capacity of antioxidant defenses, which can lead to placental cellular damage and endothelial cell dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!