MicroRNAs play an important role in controlling drug sensitivity and resistance in cancer. Identification of responsible miRNAs for drug resistance can enhance the effectiveness of treatment. A new set theoretic entropy measure (SPEM) is defined to determine the relevance and level of confidence of miRNAs in deciding their drug resistant nature. Here, a pattern is represented by a pair of values. One of them implies the degree of its belongingness (fuzzy membership) to a class and the other represents the actual class of origin (crisp membership). A measure, called granular probability, is defined that determines the confidence level of having a particular pair of membership values. The granules used to compute the said probability are formed by a histogram based method where each bin of a histogram is considered as one granule. The width and number of the bins are automatically determined by the algorithm. The set thus defined, comprising a pair of membership values and the confidence level for having them, is used for the computation of SPEM and thereby identifying the drug resistant miRNAs. The efficiency of SPEM is demonstrated extensively on six data sets. While the achieved F-score in classifying sensitive and resistant samples ranges between 0.31 & 0.50 using all the miRNAs by SVM classifier, the same score varies from 0.67 to 0.94 using only the top 1 percent drug resistant miRNAs. Superiority of the proposed method as compared to some existing ones is established in terms of F-score. The significance of the top 1 percent miRNAs in corresponding cancer is also verified by the different articles based on biological investigations. Source code of SPEM is available at http://www.jayanta.droppages.com/SPEM.html.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2019.2933205DOI Listing

Publication Analysis

Top Keywords

drug resistant
16
resistant mirnas
12
identifying drug
8
confidence level
8
pair membership
8
membership values
8
top percent
8
mirnas
7
resistant
5
drug
5

Similar Publications

Surface receptor-targeted Protein-based nanocarriers for drug delivery: Advances in cancer therapy.

Nanotechnology

January 2025

Department of Biotechnology, Kalasalingam Academy of Research and Education (Deemed to be University), Anand Nagar, School of Bio, Chemical & Process Enginneering, Krishnankoil, Krishnan Kovil, Tamil Nadu, 626126, INDIA.

Significant progress has been made in cancer therapy with protein-based nanocarriers targeted directly to surface receptors for drug delivery. The nanocarriers are a potentially effective solution for the potential drawbacks of traditional chemotherapy, such as lack of specificity, side effects, and development resistance. Peptides as nanocarriers have been designed based on their biocompatible, biodegradable, and versatile functions to deliver therapeutic agents into cancer cells, reduce systemic toxicity, and maximize therapy efficacy through utilizing targeted ligands such as antibodies, amino acids, vitamins, and other small molecules onto protein-based nanocarriers and thus ensuring that drugs selectively accumulate in the cancer cells instead of healthy organs/drug release at a target site without effects on normal cells, which inherently caused less systemic toxicity/off-target effect.

View Article and Find Full Text PDF

Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.

View Article and Find Full Text PDF

Salmonella Dublin is a serovar that causes severe infections and cattle. Despite the importance of this agent, research on achieving its elimination from dairy farms is limited, which complicates risk mitigation and control efforts. This study thus aimed to assess the prevalence of S.

View Article and Find Full Text PDF

Pathogenic protists are responsible for many diseases that significantly impact human and animal health across the globe. Almost all protists possess mitochondria or mitochondrion-related organelles, and many contain plastids. These endosymbiotic organelles are crucial to survival and provide well-validated and widely utilised drug targets in parasitic protists such as Plasmodium and Toxoplasma.

View Article and Find Full Text PDF

Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!