Tissue biomechanical properties are known to be sensitive to pathological changes. Accordingly, various techniques have been developed to estimate tissue mechanical properties. Shear-wave elastography (SWE) measures shear-wave speed (SWS) in tissues, which can be related to shear modulus. Although viscosity or stress-strain nonlinearity may act as confounder of SWE, their explicit characterization may also provide additional information about tissue composition as a contrast modality. Viscosity can be related to frequency dispersion of SWS, which can be characterized using multi-frequency measurements, herein called spectral SWE (SSWE). Additionally, nonlinear shear modulus can be quantified and parameterized based on SWS changes with respect to applied stress, a phenomenon called acoustoelasticity (AE). In this work, we characterize the nonlinear parameters of tissue as a function of excitation frequency by utilizing both AE and SSWE together. For this, we apply incremental amounts of quasi-static stress on a medium, while imaging and quantifying SWS dispersion via SSWE. Results from phantom and ex vivo porcine liver experiments demonstrate the feasibility of measuring frequency-dependent nonlinear parameters using the proposed method. SWS propagation in porcine liver tissue was observed to change from 1.8 m/s at 100 Hz to 3.3 m/s at 700 Hz, while increasing by approximately 25% from a strain of 0% to 12% across these frequencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TUFFC.2019.2933952 | DOI Listing |
Sci Rep
December 2024
Fertility and IVF Unit, Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, 151, Israel.
It has long been speculated that the mechanical properties of the human oocyte can be an indicator for oocyte viability. Recent studies have demonstrated that embryo implantation rates, following Intra-Cytoplasmic Sperm Injection (ICSI) procedures, may be increased if the shear modulus value of the oocyte Zona Pellucida (ZP) is taken into consideration during embryo transfer. The shear modulus was determined by an iterative oocyte specific finite element (FE) analysis based on the clinical ICSI data.
View Article and Find Full Text PDFSci Rep
December 2024
College of Civil Engineering and Transportation, Hohai University, Nanjing, 210098, China.
The columnar joint skeleton of 3D printed Acrylonitrile Butadiene Styrene (ABS) material, the skeleton of cement mortar and ultraviolet aging treatment are combined to pour the columnar joint rock mass (CJRM) test block. The strength, deformation, energy and failure modes of the specimens with different dip angles were analyzed by uniaxial compression test. The influence of joint skeleton on the strength of the test block was analyzed.
View Article and Find Full Text PDFTo address the challenges of performing in-situ tests on riverbed overburden gravel, this study employs three scaling methods-equal mass substitution, similar gradation, and the mixed method-to investigate the original gradation of the gravel. Large-scale triaxial consolidated drained shear tests were conducted to evaluate the effects of the maximum particle size reduction ratio (M) and confining pressure on the stress-strain behavior, fractal dimension, particle breakage, and the parameters of the Duncan-Chang model (an elastic model describing nonlinear stress-strain relationships). The study explores how scaling, based on fractal dimension and particle breakage rate, impacts the strength and deformation characteristics of gravel materials.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Center for Advanced Eye Care, Vero Beach, FL 32960, USA.
We have compared the biomechanical properties of human and porcine corneas using vibrational optical coherence tomography (VOCT). The elastic modulus of the cornea has been previously reported in the literature to vary from about several kPa to more than several GPa based on the results of different techniques. In addition, the formation of corneal cones near the central cornea in keratoconus has been observed in the clinic.
View Article and Find Full Text PDFGels
November 2024
Physics Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
Bio-based eco-friendly cellulose nanocrystals (CNCs) gain an increasing interest for diverse applications. We report the results of an investigation of hydrogels spontaneously formed by the self-assembly of carboxylated CNCs in the presence of CaCl using several complementary techniques: rheometry, isothermal titration calorimetry, FTIR-spectroscopy, cryo-electron microscopy, cryo-electron tomography, and polarized optical microscopy. Increasing CaCl concentration was shown to induce a strong increase in the storage modulus of CNC hydrogels accompanied by the growth of CNC aggregates included in the network.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!