Premise: Lichens are fungi that enter into obligate symbioses with photosynthesizing organisms (algae, cyanobacteria). Traditional narratives of lichens as binary symbiont pairs have given way to their recognition as dynamic metacommunities. Basidiomycete yeasts, particularly of the genus Cyphobasidium, have been inferred to be widespread and important components of lichen metacommunities. Yet, the presence of basidiomycete yeasts across a wide diversity of lichen lineages has not previously been tested.

Methods: We searched for lichen-associated cystobasidiomycete yeasts in newly generated metagenomic data from 413 samples of 339 lichen species spanning 57 families and 25 orders. The data set was generated as part of a large-scale project to study lichen biodiversity gradients in the southern Appalachian Mountains Biodiversity Hotspot of southeastern North America.

Results: Our efforts detected cystobasidiomycete yeasts in nine taxa (Bryoria nadvornikiana, Heterodermia leucomelos, Lecidea roseotincta, Opegrapha vulgata, Parmotrema hypotropum, P. subsumptum, Usnea cornuta, U. strigosa, and U. subgracilis), representing 2.7% of all species sampled. Seven of these taxa (78%) are foliose (leaf-like) or fruticose (shrubby) lichens that belong to families where basidiomycete yeasts have been previously detected. In several of the nine cases, cystobasidiomycete rDNA coverage was comparable to, or greater than, that of the primary lichen fungus single-copy nuclear genomic rDNA, suggesting sampling artifacts are unlikely to account for our results.

Conclusions: Studies from diverse areas of the natural sciences have led to the need to reconceptualize lichens as dynamic metacommunities. However, our failure to detect cystobasidiomycetes in 97.3% (330 species) of the sampled species suggests that basidiomycete yeasts are not ubiquitous in lichens.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajb2.1339DOI Listing

Publication Analysis

Top Keywords

basidiomycete yeasts
16
cystobasidiomycete yeasts
12
species spanning
8
spanning families
8
yeasts ubiquitous
8
ubiquitous lichens
8
dynamic metacommunities
8
species sampled
8
yeasts
7
lichens
6

Similar Publications

Lactams Exhibit Potent Antifungal Activity Against Monospecies and Multispecies Interkingdom Biofilms on a Novel Hydrogel Skin Model.

APMIS

January 2025

Oral Sciences Research Group, Glasgow Dental School, School of Medicine, Dentistry and Nursing, College of Medical, Veterinary and Life Sciences, Glasgow, UK.

Infections of intact and damaged skin barriers and keratin are frequently associated with complex biofilm communities containing bacteria and fungi, yet there are limited options for successful management. This study intended to focus on the utility of some novel proprietary lactam molecules, quorum sensing (QS)-derived halogenated furanones, which act to block the QS pathway, against key fungal pathogens of the skin (Candida albicans, Malassezia furfur and Microsporum gypseum). Moreover, we aimed to assess how these actives performed against complex interkingdom biofilms in a clinically relevant model.

View Article and Find Full Text PDF

Recently we demonstrated that the seed microbiome of certain spinach (Spinacia oleracea) seed lots can confer disease suppression against Globisporangium ultimum damping-off (previously known as Pythium ultimum). We hypothesised that differences in the microbial community composition of spinach seed lots correlate with the levels of damping-off suppressiveness of each seed lot. Here, we show that a large proportion of variance in seed-associated bacterial (16S) and fungal (ITS1) amplicon sequences was explained by seed lot identity, while 9.

View Article and Find Full Text PDF

Gellan-amino acid hydrogel-based bioreactor for optimizing the production of yeast metabolites.

Carbohydr Polym

March 2025

Biochemical Engineering Research & Process Development Centre (BERPDC), Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector-39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Hydrogels mimic natural environments due to their hydrated, polymeric networks which are beneficial for microorganism growth. The substantial water content maintains a consistently moist environment, and porous structure of hydrogel promotes efficient nutrient transfer and cell distribution, offering advantages over traditional liquid bioreactors. While their application in cell immobilization for bioconversion is well-known, their use as a solid-state fermentation matrix remains unexplored.

View Article and Find Full Text PDF

Zymocin-like killer toxin gene clusters in the nuclear genomes of filamentous fungi.

Fungal Genet Biol

January 2025

Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland. Electronic address:

Zymocin-like killer toxins are anticodon nucleases secreted by some budding yeast species, which kill competitor yeasts by cleaving tRNA molecules. They are encoded by virus-like elements (VLEs), cytosolic linear DNA molecules that are also called killer plasmids. To date, toxins of this type have been found only in budding yeast species (Saccharomycotina).

View Article and Find Full Text PDF

A niche in the context of microorganisms defines the specific ecological role or habitat inhabited by microbial species within an ecosystem. For the human commensal Malassezia, the skin surface is considered its primary niche, where it adapts to the skin environment by utilising lipids as its main carbon and energy source. However pathogenic characteristics of Malassezia include the production of allergens, immune modulation and excessive lipid utilisation, which result in several diseases such as pityriasis versicolor, seborrheic dermatitis, Malassezia folliculitis and atopic dermatitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!