Grasshoppers, Melanoplus sanguinipes (Orthoptera: Acrididae), develop larger head width (HW) and shorter leg length, relative to body size, when fed low nutrient, lignin-rich grasses compared to sibs fed a diet of high nutrient grasses. To elucidate how underlying genetic variation and plasticity of growth generate plasticity of this linear static allometry within coarse-grained environments, I measured head and leg size of three nymphal instars and adult grasshoppers raised on either a low or high nutrient diet within a half-sib quantitative genetic experiment. Doubly-multivariate repeated measures multiple analysis of variance (MANOVA) of head, mandible, and hind leg size and their rate of growth (mm/period) and growth period (days) through ontogeny were used to analyze how the ontogeny of diet-induced plasticity for these variables and additive genetic variation for plasticity (genotype × environment interaction [G×E]) contribute to plasticity in functional linear static allometry. Genetic variation for diet-induced plasticity (G×E) of head and leg size varied through ontogeny, as did genetic variation for plasticity of growth in third and fourth instar nymphs. Despite extensive genetic variation in plasticity of HW and leg length in fourth instar nymphs, the static allometry between head and leg was stable within each diet because the patterns of G×E were similar for HW, leg length and their coordinated growth. Nutrient sensitive plasticity in growth shifted the intercept but not the slope of static allometry, a result consistent with one outcome of a graphical model of the relationships between G× E and plasticity of within environment static allometry. In addition, G×E of fourth instar head and leg size was reduced in adults by negatively size-dependent, convergent growth in the last period of ontogeny. Consequently, the bivariate reaction norms of head and leg size for adults exhibited no G×E and, again, plasticity in the intercept but not in the slope of static allometry. The ontogeny of seemingly simple diet-induced linear static allometry between functional body parts in grasshoppers arises from a complex combination of differing patterns of nutrient-sensitive growth, duration of growth, convergent growth, and G×E, all relevant to understanding the development and evolution of functional allometry in hemimetabolous insects.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icb/icz137DOI Listing

Publication Analysis

Top Keywords

static allometry
32
genetic variation
20
head leg
20
leg size
20
linear static
16
variation plasticity
16
diet-induced plasticity
12
convergent growth
12
leg length
12
plasticity growth
12

Similar Publications

Article Synopsis
  • - The study examined sexual dimorphism in the skull of the Ethiopian white-footed mouse using geometric morphometrics, revealing nonsignificant differences in cranial size and shape between males and females, but significant differences in mandibular size.
  • - Discriminant analysis showed no notable differences in skull features between sexes, and allometric patterns were similar for both, indicating that growth patterns affected both male and female skulls similarly.
  • - Overall, findings suggest sexual monomorphism in the mouse's skull, implying that factors like growth-related change and functional requirements may influence skull morphology without affecting sexual differences.
View Article and Find Full Text PDF

The evolution of sexual dimorphism is widely acknowledged as a manifestation of sex-specific genetic architecture. Although empirical studies suggested that sexual dimorphism evolves as a joint consequence of constraints arising from genetic architecture and sexually divergent selection, it remains unclear whether and how these established microevolutionary processes scale up to the macroevolutionary patterns of sexual dimorphism among taxa. Here, we studied how sexual selection and parental care drive sexual dimorphism in cichlid fishes from Lake Tanganyika.

View Article and Find Full Text PDF

Allometry and phylogenetic divergence: Correspondence or incongruence?

Anat Rec (Hoboken)

July 2024

Dipartimento di Scienze Chimiche e Geologiche, Università di Modena e Reggio Emilia, Modena, Italy.

The potential connection between trends of within species variation, such as those of allometric change in morphology, and phylogenetic divergence has been a central topic in evolutionary biology for more than a century, including in the context of human evolution. In this study, I focus on size-related shape change in craniofacial proportions using a sample of more than 3200 adult Old World monkeys belonging to 78 species, of which 2942 specimens of 51 species are selected for the analysis. Using geometric morphometrics, I assess whether the divergence in the direction of static allometries increases in relation to phyletic differences.

View Article and Find Full Text PDF

Allometry and ecology shape eye size evolution in spiders.

Curr Biol

July 2024

Oxford University Museum of Natural History, University of Oxford, Oxford OX1 3PW, UK. Electronic address:

Eye size affects many aspects of visual function, but eyes are costly to grow and maintain. The allometry of eyes can provide insight into this trade-off, but this has mainly been explored in species that have two eyes of equal size. By contrast, animals possessing larger visual systems can exhibit variable eye sizes within individuals.

View Article and Find Full Text PDF

Predictive models of ectotherm responses to environmental change often rely on thermal performance data from the literature. For insects, the majority of these data focus on two traits, development rate and thermal tolerance limits. Data are also often limited to the adult stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!