We present experimental data that complement and validate some biochemical features at the genome level in the UVC-resistant Antarctic bacterium Hymenobacter sp. UV11 strain. The genome was sequenced, assembled and annotated. It has 6 096 246 bp, a GC content of 60.6% and 5155 predicted genes. The secretome analysis, by combining in silico predictions with shotgun proteomics data, showed that UV11 strain produces extracellular proteases and carbohydrases with potential biotechnological uses. We observed the formation of outer membrane vesicles, mesosomes and carbon-storage compounds by using transmission electron microscopy. The in silico analysis of the genome revealed the presence of genes involved in the metabolism of glycogen-like molecules and starch. By HPLC-UV-Vis analysis and 1H-NMR spectra, we verified that strain UV11 produces xanthophyll-like carotenoids such as 2'-hydroxyflexixanthin, and the in silico analysis showed that this bacterium has genes involved in the biosynthesis of cathaxanthin, zeaxanthin and astaxanthin. We also found genes involved in the repair of UV-damaged DNA such as a photolyase, the nucleotide excision repair system and the production of ATP-dependent proteases that are important cellular components involved in the endurance to physiological stresses. This information will help us to better understand the ecological role played by Hymenobacter strains in the extreme Antarctic environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/femsle/fnz177 | DOI Listing |
Pharmacol Res Perspect
February 2025
Department of Pharmaceutical Health Care and Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
Doxorubicin (DOXO) has long been used clinically and remains a key drug in cancer therapy. DOXO-induced cardiomyopathy (DICM) is a chronic and fatal complication that severely limits the use of DOXO. However, there are very few therapeutic agents for DICM, and there is an urgent need to identify those that can be used for a larger number of patients.
View Article and Find Full Text PDFPest Manag Sci
January 2025
State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, China.
Background: Juvenile hormone (JH) is a key endocrine governing insect development, metamorphosis and reproduction. JH analogs have offered great potential for insect pest control. In adulthood, JH titer rapidly increases in the previtellogenic period and reaches a peak in the vitellogenic phase.
View Article and Find Full Text PDFParasit Vectors
January 2025
Department of Biology, University of Padova, Padova, Italy.
Background: The mite Varroa destructor is the most serious pest of the western honey bee (Apis mellifera) and a major factor in the global decline of colonies. Traditional control methods, such as chemical pesticides, although quick and temporarily effective, leave residues in hive products, harming bees and operators' health, while promoting pathogen resistance and spread. As a sustainable alternative, RNA interference (RNAi) technology has shown great potential for honey bee pest control in laboratory assays, but evidence of effectiveness in the field has been lacking.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
Background: RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type.
View Article and Find Full Text PDFMol Med
January 2025
Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, China.
The incidence of obesity is increasing annually worldwide. A high-fat diet (HFD) causes intestinal barrier damage, but effective interventions are currently unavailable. Our previous work demonstrated the therapeutic effect of nobiletin on obese mice; thus, we hypothesized that nobiletin could reverse HFD-induced damage to the intestinal barrier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!