As a technique capable of rapid, nondestructive, and multi-elemental analysis, portable X-ray fluorescence (pXRF) has applications to mineral exploration, environmental evaluation, and archaeological analysis. However, few applications have been conducted in the smelting industry especially when analyzing the metal concentration in ore concentrate samples. This research analyzed the effectiveness of using pXRF in determining the metal concentration in Fe concentrate. For this proof of concept study, Fe ore samples dominated by Fe and Si were collected from the Northeastern University Mineral Processing Laboratory (Shenyang, China) and directly analyzed using pXRF, laboratory-based XRF, and titration methods. The compactness (density) of the ore concentrate was found to have very little effect on pXRF readings. The pXRF readings for Fe and Si were comparative to laboratory-based XRF results. Based on the strong correlations between the pXRF and XRF results (Fe: R> 0.99, Si: R> 0.96), linear calibrations were adopted to improve the accuracy of pXRF readings. Linear regression equations derived from the relations between XRF results and pXRF results of 21 Fe ore concentrate samples were used to calibrate the pXRF, and then validation was performed on five additional samples. Results from this preliminary study suggest that ordinary least squares (OLS) regression improves the accuracy dramatically, especially for Fe with relative errors (REs) decreasing to 0.03%-3.27% from 4.26%-8.32%. Consequently, pXRF shows strong promise for rapid, quantitative analysis of Fe concentration in Fe ore concentrate. Based on the results obtained in this study, a larger, more comprehensive study is warranted to confirm the results obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0003702819871627 | DOI Listing |
Nature
January 2025
School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia.
The cratonic crust contains abundant mineral deposits of metals such as gold, copper and rare earths and is underlain by a thick mantle lithosphere rich in the volatiles carbon, sulfur and water. Although volatiles are known to be key components in metallogenesis, how and where they are distributed in the cratonic lithosphere mantle and their role in the initial enrichment of metals have not been sufficiently explored. Here we compile sulfur and copper contents of global cratonic peridotites, identifying sulfide-rich and copper-rich continental roots at depths of 160-190 km at cratonic margins.
View Article and Find Full Text PDFACS Omega
December 2024
Danxia Smelter, Shenzhen Zhongjin Lingnan Nonfemet Company Limited, Shaoguan 512325, China.
Horizontal subsurface flow constructed wetlands (HFCWs) are capable of eliminating organic matter and nitrogen while emitting less methane (CH) and nitrous oxide (NO) than free water surface flow wetlands. However, the simultaneous removal of pollutants and reduction of greenhouse gases (GHG) emissions from high-strength wastewater containing high levels of organic matter and ammonium nitrogen (NH-N) has not get been investigated. The influent COD concentration affected the efficiency of nitrogen removal, GHG emissions and the presence of iron from iron ore, but the COD and TP removal efficiencies remained unaffected.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
School of Geography and Environmental Sciences, Guizhou Normal University, Guiyang 550025, China. Electronic address:
In aquatic environments, the deposition behaviors of nanoplastics (NPs) are closely associated with interfacial interaction between NPs and iron (hydr)oxides minerals, which are typically coupled with solution chemistry and organic matter. However, the roles of solution chemistry and organic matter in the deposition behavior of NPs with iron (hydr)oxides minerals and related interfacial interaction mechanism are still poorly understood. In this study, the deposition behaviors of carboxyl-modified polystyrene nanoparticles (COOH-PSNPs) with magnetite were systematically investigated.
View Article and Find Full Text PDFProbl Radiac Med Radiobiol
December 2024
State Institution «O.M. Marzіeiev Institute for Public Health of the National Academy of Medical Sciences of Ukraine», 50 Hetman Pavlo Polubotok Str., Kyiv, 02094, Ukraine.
Objective: assessment of probable exposure levels from radon and NORM in workplaces within the context of justi fying radiation protection plans in an existing exposure situation.
Materials And Methods: Materials regarding the assessment of naturally occurring radioactive material (NORM) con tent in tailing from mining and processing industries in Ukraine and assessments of contamination levels of industri al sites of oil and gas enterprises were used for estimating the probable range of effective doses (ED) of workers fromNORM at industrial enterprises. These materials were obtained as a result of research conducted by specialists from theRadiation Protection Laboratory of the State Institution «O.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!