Enantiopure bimetallic systems containing three different elements of chirality, namely a main-group-based chiral center (sulfur), a transition-metal chiral center (rhodium or iridium), and a planar chiral element (ferrocene or ruthenocene), have been prepared by a sequence of diastereoselective reactions. The chirality of the chiral sulfur center attached to C-5 of a 1,2,3-triazolylidene mesoionic carbene (MIC) ligand coordinated to a metal (Ir, Rh) was transferred through the formation of bimetallic complexes having a chiral-at-metal center and a planar chiral metallocene by C-H activation of the sandwich moiety (M=Fe, Ru). The sense of the planar chirality formed in this sequence of reactions depended on the nature of the ligands at the metal center of the starting complex. The configurations of these species were assigned on the basis of a combination of X-ray diffraction and CD measurements. An electrochemical study of these bimetallic complexes in coordinating solvents showed an equilibrium between the cationic complexes and the neutral species. The effect of the half-sandwich moiety on the oxidation potentials of the system is remarkable, producing notable cathodic displacements. DFT calculations support these findings.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201902102DOI Listing

Publication Analysis

Top Keywords

planar chiral
12
mesoionic carbene
8
chiral center
8
bimetallic complexes
8
chiral
6
planar
5
center
5
central central
4
central m=ir
4
m=ir planar
4

Similar Publications

High-Performance Circular Polarization Multiple-Resonance TADF Molecules with Enhanced Long-Range Charge Transfer Based on Chiral Paracyclophane.

J Phys Chem Lett

December 2024

State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China.

Circularly polarized multiple-resonance thermally activated delayed fluorescence (CP-MR-TADF) materials have received widespread attention in recent years, but it remains a formidable challenge to design high-performance CP-MR-TADF emitters concurrently exhibiting high quantum efficiency, narrowband emission, and high dissymmetry factor (). Here, we perform an in-depth theoretical investigation on the CP-MR-TADF materials based on [2.2] paracyclophane (pCp) derivatives.

View Article and Find Full Text PDF

Genome-informed Discovery of Monchicamides A-K: Cyanobactins from the Microcoleaceae Cyanobacterium LEGE 16532.

J Nat Prod

December 2024

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto, Avenida General Norton de Matos, s/n4450-208Matosinhos, Portugal.

Genome mining has emerged as an important tool for the discovery of natural products and is particularly effective for the swift identification of ribosomally synthesized and post-translationally modified peptides (RiPPs). Among RiPPs, cyanobactins have gained attention due to their diverse structures and bioactive properties. Here, we explored the Microcoleaceae cyanobacterium LEGE 16532 strain and identified the biosynthetic gene cluster (BGC), which was predicted to encode cyanobactin-like molecules.

View Article and Find Full Text PDF

Development of chiral organic materials with a strong chiroptical response is crucial to advance technologies based on circularly polarized luminescence, enantioselective sensing, or unique optical signatures in anti-counterfeiting. The progress in the field is hampered by the lack of structure-property relationships that would help designing new chiral molecules. Here, we address this challenge by synthesis and investigation of two chiral macrocycles that integrate in their structure a pseudo-meta [2.

View Article and Find Full Text PDF

Seven cyclic depsipeptides, including two new cyclic pentadepsipeptides avenamides A () and B (), were isolated from a plant-derived fungus W8 by using the bioassay-guided fractionation method. The planar structures were elucidated by using comprehensive spectroscopic analyses, including 1D and 2D NMR, as well as MS/MS spectrometry. The absolute configuration of the amino acid and hydroxy acid residues was confirmed by using the advanced Marfey's method and chiral HPLC analysis, respectively.

View Article and Find Full Text PDF

Advances in Chiral Macrocycles: Molecular Design and Applications.

Chemistry

December 2024

South China University of Technology, School of Chemistry and Chemical Engineering, 381 Wushan Road, 510641, Guangzhou, CHINA.

Chiral macrocycles have recently emerged as promising materials for enantioselective recognition, asymmetric catalysis, and circularly polarized luminescence (CPL) due to their terminal-free structure, preorganized chiral cavities, and unique host-guest and self-assembly properties. This review summarizes recent advances in the design and synthesis of chiral macrocycles with central, axial, helical, and planar chirality, each imparting distinct structural and chiroptical characteristics. We highlight key strategies for constructing these macrocycles and their applications in optoelectronic and catalytic systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!