Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-quality multimodal imaging requires exogenous contrast agents with high sensitivity, spatial-temporal resolution, and high penetration depth for the accurate diagnosis and surveillance of cancer. Herein, we design a highly efficient fluorescent and magnetic multimodal probe by doping fluorescent molecule 2-(4-bromophenyl)-3-(4-(4-(diphenylamino)styryl)phenyl)fumaronitrile (TB) with near-infrared (NIR) fluorescent emission (714 nm) and superparamagnetic iron oxide (SPIO) into a polystyrene-polyethylene glycol (PS-PEG) matrix to form TB/SPIO@PS-PEG nanoparticles (TSP NPs). The as-prepared TSP NPs exhibit red aggregation-induced emission (AIE) with a maximum wavelength at 655 nm and high fluorescence quantum yield (QY) of 14.6%, facilitating the improvement of sensitivity and signal-to-background ratio for fluorescence molecular imaging (FMI). Phase behavior investigation of the TB/SPIO@PS-PEG probe system by Flory-Huggins lattice theory elucidates the highly efficient fluorescence of the multimodal probe, originating from the poor miscibility between TB and SPIO. Meanwhile, the TSP NPs possess good superparamagnetism and relaxivity and can thus be used as appropriate magnetic contrast agents for magnetic resonance imaging (MRI) and magnetic particle imaging (MPI). In addition, the good biocompatibility and photostability of the TSP NPs make them suitable for long-term monitoring. In vivo fluorescence imaging results indicate that the TSP NPs can facilitate monitoring of subcutaneous tumor growth for more than 24 days in a real-time manner. Multimodal imaging consisting of FMI, MRI, and MPI reveals that TSP NPs can monitor a liver tumor in situ with almost unlimited depth in tissues and high temporal-spatial resolution. As a multimodal probe, the TSP NPs manifest obvious synergistic advantages of long-term monitoring and high penetration depth and hold great prospects in tumor imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9tb00638a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!