Background: Somatic mosaicism is to date an uncommon finding in genetic autoinflammatory syndromes such as Cryopyrin-associated periodic syndrome, Blau syndrome, and TNF receptor-associated periodic syndrome (TRAPS). However, somatic mosaicism may be particularly important in adult-onset or atypical phenotypes of these conditions. Herein, we report a unique adult-onset TRAPS patient presenting with intermittent daily fever for 3 weeks, rash, peritonitis, and lymphadenopathy, who was found with hematopoietic mosaicism involving different white blood cell populations.

Methods: Patient's lymphocyte genomic DNA was initially analyzed by periodic fever seven-gene next-generation sequencing panel. Genomic DNAs extracted from patient's hair roots, buccal swab, and subpopulations of white blood cells were subsequently examined on the identified TNFRSF1A variant using Sanger sequencing.

Results: A de novo mosaic missense variant, c.265 T>C(p.Phe89Leu), in the TNFRSF1A gene was found in the patient's buccal swab, B cells, neutrophils, and NK cells but not detected in monocytes, T cells, and hair roots.

Conclusion: These data provide additional information about somatic mosaicism in autoinflammatory conditions and provide new insights regarding cellular players that are indispensable for the phenotypic expression of TRAPS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687656PMC
http://dx.doi.org/10.1002/mgg3.791DOI Listing

Publication Analysis

Top Keywords

somatic mosaicism
16
periodic syndrome
12
mosaicism adult-onset
8
tnf receptor-associated
8
receptor-associated periodic
8
syndrome traps
8
white blood
8
buccal swab
8
somatic
4
adult-onset tnf
4

Similar Publications

Objective: Somatic variants causing epilepsy are challenging to detect, as they are only present in a subset of brain cells (e.g., mosaic), resulting in low variant allele frequencies.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), an age-associated neurodegenerative disorder, is characterized by progressive neuronal loss and the accumulation of misfolded proteins such as amyloid-β and tau. While neuroinflammation, mediated by microglia and brain-resident macrophages, plays a pivotal role in AD pathogenesis, the intricate interactions among age, genes, and other risk factors remain elusive. Somatic mutations, known to accumulate with age, instigate clonal expansion across diverse cell types, impacting both cancer and non-cancerous conditions.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Population and Quantitative Health Sciences, Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.

Background: Mosaic loss of the Y chromosome (LOY) is a somatic, age-related event that has been previously associated with a variety of diseases of aging. A prior study of European cohorts demonstrated an association between LOY and Alzheimer's Disease and more recent molecular studies have shown that LOY can also occur within microglia, suggesting a potential functional role in AD pathogenesis.

Method: In this study, we further validate the association between LOY in blood and AD via prospective analyses of 1,447 males.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.

Background: Mosaic loss of chromosome Y (mLOY) refers to acquired aneuploidy in a fraction of somatic cells. In aging men, this has been suggested as a possible biomarker for increased risk of numerous diseases, including Alzheimer's disease (AD). We investigated mLOY estimated from whole genome sequencing (WGS) as a risk factor for AD in the Midwestern Amish, a founder population with homogeneous lifestyle, reducing the effect of confounding environmental factors.

View Article and Find Full Text PDF

Backtracking Cell Phylogenies in the Human Brain with Somatic Mosaic Variants.

Methods Mol Biol

January 2025

Sorbonne Université, Institut du Cerveau (Paris Brain Institute) ICM, Inserm, CNRS, Hôpital de la Pitié Salpêtrière, Paris, France.

Somatic mosaic variants, and especially somatic single nucleotide variants (sSNVs), occur in progenitor cells in the developing human brain frequently enough to provide permanent, unique, and cumulative markers of cell divisions and clones. Here, we describe an experimental workflow to perform lineage studies in the human brain using somatic variants. The workflow consists in two major steps: (1) sSNV calling through whole-genome sequencing (WGS) of bulk (non-single-cell) DNA extracted from human fresh-frozen tissue biopsies, and (2) sSNV validation and cell phylogeny deciphering through single nuclei whole-genome amplification (WGA) followed by targeted sequencing of sSNV loci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!