Problem: Systemic immuno-inflammatory response caused by maternal immune imbalance is central to the pathogenesis of preeclampsia (PE). We hypothesized that changes in the number of decidual mesenchymal stem cells (dMSCs) may be associated with maternal immune imbalance. We aimed to evaluate the expression of CXCL12/CXCR4 axis in patients with PE and its influence on the migration behavior of dMSCs, to further clarify the pathogenesis of PE.

Method Of Study: Fourteen women with PE and 11 controls were included. DMSCs were extracted from decidual tissue by type II collagenase digestion and adherence. ELISA and immunohistochemistry analysis were used to measure serum and tissue levels of CXCL12. Q-PCR and Western blotting were used to detect CXCR4 expression on dMSCs, whereas transwell assay was used to measure the migration ability of dMSCs.

Results: Decidual mesenchymal stem cells from women with PE showed higher expressions of CXCR4 and HIF-1α than the dMSCs of controls did. Tissues from women with PE showed the highest CXCL12 levels in the decidua, followed by the placenta and umbilical cord, whereas tissues from controls showed the highest CXCL2 levels in the umbilical cord, followed by the placenta and decidua. dMSCs from women with PE showed possibly higher migration ability than that of dMSCs from controls, under the induction of CXCL12, whereas dMSCs showed a decreasing trend in hypoxic than in normoxic environment.

Conclusion: Decidual mesenchymal stem cells from women with PE can migrate to the decidua layer with the concentration gradient of CXCL12, which may play a role in the occurrence and development of PE.

Download full-text PDF

Source
http://dx.doi.org/10.1111/aji.13180DOI Listing

Publication Analysis

Top Keywords

mesenchymal stem
16
stem cells
16
decidual mesenchymal
12
maternal immune
8
immune imbalance
8
dmscs
8
migration ability
8
cells women
8
women higher
8
dmscs controls
8

Similar Publications

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Westport, CT, USA.

Background: A 73-year-old female with a 3 year history of Alzheimer's disease was treated within the protocol of The Alzheimer's Autism and Cognitive Impairment Stem Cell Treatment Study (ACIST), an IRB approved clinical study registered with clinicaltrials.gov NCT03724136.

Method: The procedure consists of bone marrow aspiration, cell separation using an FDA cleared class 2 device, and intravenous and intranasal administration of the stem cell fraction.

View Article and Find Full Text PDF

Bone marrow mesenchymal stem cells (BMSCs) -derived extracellular vesicles (EVs), especially small EVs (sEVs), were vastly reported to enable multiple restorative effects on ischemic stroke, yet the protective mechanism of blood-brain barrier (BBB) has not been fully illustrated. In the present study, we investigated the therapeutic effects and mechanism of BMSCs-derived sEVs on BBB injury after ischemic stroke. In-vivo, administering sEVs to transient middle cerebral artery occlusion (tMCAo) mice mitigated the brain infarct volume, BBB permeability and neural apoptosis, and improved the cerebral blood flow perfusion and neurological function.

View Article and Find Full Text PDF

The underlying mechanisms between cancer stem cells (CSC) and epithelial-mesenchymal transition (EMT) in pancreatic cancer (PC) remain unclear. In this study, we identified TGIF2 as a target gene of CSC using sncRNA and machine learning. TGIF2 is closely related to the expression of SOX2, EGFR, and E-cadherin, indicating poor prognosis.

View Article and Find Full Text PDF

Developing new drug delivery systems is crucial for enhancing the efficacy of oncolytic virus (OV) therapies in cancer treatment. In this study, mesenchymal stem cell (MSC)-derived vesicles and oncolytic viruses are exploited to construct a novel formulation. It has been hypothesized that vesicle-coated OVs could amplify cytotoxic effects through superior internalization by tumor cells.

View Article and Find Full Text PDF

Background: The 3D printing of macro- and mesoporous biomimetic grafts composed of polycaprolactone (PCL) infused with nanosized synthetic smectic clay is a promising innovation in biomaterials for bone tissue engineering (BTE). The main challenge lies in achieving a uniform distribution of nanoceramics across low to high concentrations within the polymer matrix while preserving mechanical properties and biological performance essential for successful osseointegration.

Methods: This study utilized 3D printing to fabricate PCL scaffolds enriched with nanosized synthetic smectic clay (LAP) to evaluate its effects on structural, chemical, thermal, mechanical, and degradative properties, with a focus on in vitro biological performance and non-toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!