Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Higher cognitive functions are the product of a dynamic interplay of perceptual, mnemonic, and other cognitive processes. Modeling the interplay of these processes and generating predictions about both behavioral and neural data can be achieved with cognitive architectures. However, such architectures are still used relatively rarely, likely because working with them comes with high entry-level barriers. To lower these barriers, we provide a methodological primer for modeling higher cognitive functions and their constituent cognitive subprocesses with arguably the most developed cognitive architecture today-ACT-R. We showcase a principled method of generating individual response time predictions, and demonstrate how neural data can be used to refine ACT-R models. To illustrate our approach, we develop a fully specified neurocognitive model of a prominent strategy for memory-based decisions-the take-the-best heuristic-modeling decision making as a dynamic interplay of perceptual, motor, and memory processes. This implementation allows us to predict the dynamics of behavior and the temporal and spatial patterns of brain activity. Moreover, we show that comparing the predictions for brain activity to empirical BOLD data allows us to differentiate competing ACT-R implementations of take the best.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13428-019-01286-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!