A variety of epigenetic dysregulations are observed in thyroid malignancies. EZH2, the catalytic subunit of polycomb repressive complex 2, is upregulated in advanced thyroid cancers. EZH2 can catalyze trimethylation of histone H3 at lysine 27 (H3K27me3) and contribute to transcriptional silencing of target genes. Here, we investigated the immunohistochemical expression of H3K27me3 in neoplastic and normal thyroid tissues. Normal thyroid epithelial cells typically exhibited nuclear staining of moderate intensity. A similar expression pattern was observed in nodular goiters and follicular adenomas. By contrast, strong H3K27me3 expression was evident in 80% (8/10) lymphocytic thyroiditis, 63% (80/127) papillary thyroid cancer, 41% (7/17) follicular thyroid cancer, and 73% (8/11) poorly differentiated and anaplastic thyroid cancer. In differentiated thyroid cancer, strong H3K27me3 expression was associated with extrathyroidal extension (p < 0.001), lymphovascular invasion (p = 0.029), lymph node metastasis (p = 0.006), and higher risk of recurrence (p = 0.003). Our results indicate that H3K27me3 overexpression may be implicated in aggressiveness and dedifferentiation of thyroid cancer. In addition to prognostication, the predictive value of H3K27me3 expression deserves further investigation given the recent development of epigenetic targeting agents.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12022-019-09586-1DOI Listing

Publication Analysis

Top Keywords

thyroid cancer
20
thyroid
9
histone lysine
8
normal thyroid
8
strong h3k27me3
8
h3k27me3 expression
8
cancer
5
overexpression histone
4
lysine trimethylation
4
trimethylation associated
4

Similar Publications

Background: Hypothyroidism is a common sequela after radiotherapy for nasopharyngeal carcinoma (NPC). Magnetic resonance imaging (MRI) has gained prominence in thyroid imaging, leveraging its non-ionizing radiation, high spatial resolution, multiparameter and multidirectional imaging. Few previous studies have investigated the evaluation of radiation-induced thyroid injury by MRI.

View Article and Find Full Text PDF

Background: The differential diagnosis between benign and malignant thyroid nodules continues to be a major challenge in clinical practice. The rising incidence of thyroid neoplasm and the low incidence of aggressive thyroid carcinoma, urges the exploration of strategies to improve the diagnostic accuracy in a pre-surgical phase, particularly for indeterminate nodules, and to prevent unnecessary surgeries. Only in 2022, the 5th WHO Classification of Endocrine and Neuroendocrine Tumors, and in 2023, the 3rd Bethesda System for Reporting Thyroid Cytopathology and the European Thyroid Association included biomarkers in their guidelines.

View Article and Find Full Text PDF

The emergence of targeted anti-tumor drugs has significantly prolonged the lifespan and improved the prognosis of cancer patients. Among these drugs, vascular endothelial growth factor (VEGF) inhibitors, particularly novel small molecule tyrosine kinase inhibitors (TKIs), are extensively employed as VEGF inhibitors; however, they are also associated with a higher incidence of complications, with hypertension being the most prevalent cardiovascular toxic side effect. Currently, it is widely accepted that TKIs-induced hypertension involves multiple mechanisms including dysregulation of the endothelin (ET) axis, reduced bioavailability of nitric oxide (NO), imbalance in NO-ROS equilibrium system, vascular rarefaction, and activation of epithelial sodium calcium channels; nevertheless, excessive activation of ET system appears to be predominantly responsible for this condition.

View Article and Find Full Text PDF

Platelet-derived growth factor alpha (PDGFRA) plays a significant role in various malignant tumors. PDGFRA expression boosts thyroid cancer cell proliferation and metastasis. Radiorefractory thyroid cancer is poorly differentiated, very aggressive, and resistant to radioiodine therapy.

View Article and Find Full Text PDF

Background: Anaplastic thyroid carcinoma (ATC) is the most aggressive thyroid gland malignancy. Several consensuses support the concept of multimodal therapy that combines surgery, radiation, chemotherapy, and targeted therapy. However, patient's comorbidity, poor performance status, and metastasis often make it impossible for patients to undergo multimodal therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!