Fish red blood cells (RBCs) exhibit an oxygen-dependent regulatory volume decrease (RVD) in hypoosmotic environment. In higher vertebrates, membrane-associated hemoglobin is involved in the regulation of osmotic ion movements across the cellular membrane. However, whether the hemoglobin conformational state plays a role in the regulation of osmotic responses in fish red blood cells is still not fully understood. We found that changes in hemoglobin conformation influence the pattern of the regulatory volume decrease in Carassius carassius red blood cells. In oxygenated cells (96.4 ± 3.7% oxygenated hemoglobin), the volume recovery was completed within 125 min. Deoxygenation of hemoglobin (96.5 ± 2.7% of deoxygenated hemoglobin) inhibited the volume decrease in hyposmotically swollen red blood cells. Reoxygenation restored regulatory volume decrease in cells within 5 min. Induced methemoglobinemia (48.4 ± 1.8% of methemoglobin and 41.3 ± 2.3% of deoxygenated hemoglobin) blocked the process of volume recovery and significantly decreased osmotic stability of red blood cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10695-019-00689-4DOI Listing

Publication Analysis

Top Keywords

red blood
24
blood cells
24
volume decrease
20
regulatory volume
16
hemoglobin
8
carassius carassius
8
carassius red
8
cells
8
fish red
8
regulation osmotic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!