We report two ligand-controlled cascade reactions relying on the intramolecular carbopalladation of skipped dienes. The use of a bulky monodentate phosphine ligand affords [4,5]-spirocycles via sequential double carbopalladation, however bidentate phosphines promote a remote β-C-elimination process which does not rely on the use of strained or sterically hindered substrates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9cc04817k | DOI Listing |
Dokl Biochem Biophys
January 2025
Nephrology Department, Liangping Hospital, Liangping District People's Hospital of Chongqing, 405299, Chongqing, China.
The current study examined the underlying mechanism and the effect of 1,3-thiazin-6-one on the growth of renal cancer. The findings showed that 1,3-thiazin-6-one treatment inhibited the growth of xenograft tumors in a dose-dependent manner in mice model of renal cancer. Furthermore, when 1,3-thiazin-6-one was administered in a dose-dependent manner to mice with renal cancer, the expression of the proteins p-PI3K and p-Akt significantly decreased.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
The construction of complex molecules under metal-free conditions multiple bond-forming steps in a cascade manner is highly desirable. Herein, we have developed an HFIP-alone promoted aminomethylation and intramolecular cyclization of allenamides, providing biologically relevant tetrahydro-β-carboline derivatives embedded with an allylic amine functionality. The metal-free protocol provided the desired tetrahydro-β-carboline derivatives under mild conditions.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China.
PANoptosis is a novelly defined mode of programmed cell death that involves the activation of multiple cellular death pathways, including pyroptosis, apoptosis, and necroptosis, triggering robust inflammatory reactions. Autophagy is a crucial cellular process that maintains cellular homeostasis and protects cells from various stresses. PANoptosis and autophagy, both vital players in the intricate pathological progression of ischemic stroke (IS), a brain ailment governed by intricate cell death cascades, have garnered attention in recent years for their potential interplay.
View Article and Find Full Text PDFACS Nano
January 2025
Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory of Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Ammonia synthesis via nitrate electroreduction is more attractive and sustainable than the energy-extensive Haber-Bosch process and intrinsically sluggish nitrogen electroreduction. Herein, we have designed a single-site Cu catalyst on hierarchical nitrogen-doped carbon nanocage support (Cu/hNCNC) for nitrate electroreduction, which achieves an ultrahigh ammonia yield rate (YR) of 99.4 mol h g (2.
View Article and Find Full Text PDFJ Org Chem
January 2025
College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang 464000, China.
A novel and efficient method for the intermolecular hydroxysulfonylation of vinylarenes using sodium sulfinates has been achieved through aerobic copper catalysis. This transformation proceeded smoothly with green air as the terminal oxidant in the presence of Cu (I)/1,10-phenanthroline as an efficient catalytic system, leading to an array of β-hydroxysulfones in moderate to high yields. The significant advantages of this protocol are the mild reaction conditions, readily available starting materials, good functional-group compatibility, synthetic convenience, and practicability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!