Kawasaki disease (KD) is a self-limiting illness with acute systematic vascular inflammation. It causes pathological changes in mostly medium and small-sized arteries, especially the arteria coronaria, which adds the risk of developing coronary heart disease in adults. We detected the miR-223-3p expression in 30 KD patients combined with 12 normal controls using miRNA microarrays and RT-PCR. A KD mouse model was constructed using Candida albicans water insoluble substance (CAWS). We also checked the miR-223-3p's expression using qRT-PCR. The Luciferase reporting system was implemented to validate the correlation between miR-223-3p and Interleukin-6 receptor subunit beta (IL-6ST). TNF-α was used to stimulate human coronary artery endothelial cells (HCAECs), and miR-223-3p activator or inhibitor and KD serum were used to treat HCAECs. A Western blotting automatic quantitative analysis protein imprinting system was used to test the expression of signal transducer and the activator of transcription 3 (STAT3), phosphorylated-signal transducer and the activator of transcription 3 (pSTAT3) and NF-κB p65. Clinical trials found that miR-223-3p expressions were markedly different (more than 2-fold) between the acute KD group and the control group. E-selectin and intercellular cell adhesion molecule-1 (ICAM-1) levels were also significantly higher (about 2-fold) in KD especially with coronary artery lesions. MiR-223-3p could alleviate vascular endothelial damage in KD mice, and IL-6 (Interleukin-6), E-selectin and ICAM-1 were simultaneously negative. The values of IL-6, E-selectin, and ICAM-1 mRNA expressions decreased, while the value of IL-6ST was increased between the agonist treated mice and KD mice. The RT-qPCR consequences displayed that miR-223-3p explored the highest expression on the third day in both the KD mice as well as the agonist group. MiR-223-3p can directly combine with IL-6ST 3' untranslatable regions (UTR) and held back the IL-6's expression. Overexpression of miR-223 down regulated IL6ST expression and decreased the expression of p-STAT3 and NF-κB p65, while the miR-223 inhibitor could reverse the above process. MiR-223-3p is an important regulatory factor of vascular endothelial damage in KD and could possibly become a potential target of KD treatment in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6667785 | PMC |
http://dx.doi.org/10.3389/fped.2019.00288 | DOI Listing |
Front Pharmacol
December 2024
Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Neprilysin (NEP), a zinc-dependent membrane-bound metallopeptidase, regulates various bioactive peptides, particularly in kidneys, vascular endothelium, and the central nervous system. NEP's involvement in metabolizing natriuretic peptides, insulin, and enkephalins makes it a promising target for treating cardiovascular and Alzheimer's diseases. Several NEP inhibitors, such as sacubitril and omapatrilat, have been approved for clinical use, which inhibit NEP activity to prolong the bioactivity of beneficial peptides, thereby exerting therapeutic effects.
View Article and Find Full Text PDFRetinopathy of prematurity (ROP) and diabetic retinopathy (DR) are ocular disorders in which a loss of retinal vasculature leads to ischemia followed by a compensatory neovascularization response. In mice, this is modeled using oxygen-induced retinopathy (OIR), whereby neonatal animals are transiently housed under hyperoxic conditions that result in central retina vessel regression and subsequent neovascularization. Using endothelial cell (EC)-specific gene deletion, we found that loss of two ETS-family transcription factors, ERG and FLI1, led to regression of OIR-induced neovascular vessels but failed to improve visual function, suggesting that relevant retinal damage occurs prior to and independently of neovascularization.
View Article and Find Full Text PDFBackground: -related schwannomatosis ( -SWN) is a debilitating condition that calls for robust treatment options. The defining feature of -SWN is the presence of bilateral vestibular schwannomas (VSs), which grow over time and can result in irreversible sensorineural hearing loss, significantly affecting the quality of life for those affected. At present, there are no FDA-approved medications specifically for treating VS or related hearing loss.
View Article and Find Full Text PDFObesity is a global health crisis, with its prevalence particularly severe in the United States, where over 42% of adults are classified as obese. Obesity is driven by complex molecular and tissue-level mechanisms that remain poorly understood. Among these, angiogenesis-primarily mediated by vascular endothelial growth factor (VEGF-A)-is critical for adipose tissue expansion but presents unique challenges for therapeutic targeting due to its intricate regulation.
View Article and Find Full Text PDFDisorders in pulmonary vascular integrity are a prominent feature in many lung diseases. Paracrine signaling is highly enriched in the lung and plays a crucial role in regulating vascular homeostasis. However, the specific local cell-cell crosstalk signals that maintain pulmonary microvascular stability in adult animals and humans remain largely unexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!