RhoA GTPase is physiologically involved in the formation of stress fibers, cellular contractility and polarity, maintenance of cell cycle and transcriptional control. During tumorigenesis, it plays roles in cancer cell proliferation, apoptosis, adhesion, invasion and metastasis. While RhoA seems to act as a tumor promotor in most malignancies, data regarding its function in skin melanoma are fragmentary and conflicting. We aimed to clarify the clinical significance of RhoA expression in melanoma by immunohistochemical evaluation of 134 primary tumors and subsequent statistical analysis with clinicopathological profiles of patients. Increased RhoA expression was associated with thinner tumors, higher grade of tumor-infiltrating lymphocytes and lack of disease recurrence. Moreover, we observed a trend towards higher RhoA expression in cases without concurrent metastases. Recurrence-free survival and melanoma-specific survival of patients with high RhoA-expressing tumors were significantly prolonged. Multivariable regression model adjusting for melanoma thickness and status of regional lymph nodes confirmed independent prognostic value of RhoA immunoreactivity. In summary, we found associations between RhoA expression and histopathological phenotype of primary tumors as well as patient survival which suggest a suppressive role of RhoA in skin melanoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684925 | PMC |
Cureus
November 2024
Child Psychiatry, Adana City Training and Research Hospital, Adana, TUR.
Objective: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that emerges in early childhood and is characterized by difficulties in social communication, repetitive behaviors, and restricted interests. The Ras homolog (Rho)/Rho-kinase signaling pathway plays a critical role in maintaining synaptic structure and function, as it regulates the actin cytoskeleton. This study aims to investigate the expression of the Ras homolog (Rho) family member A (), Rho-kinase 1 (), and Rho-kinase 2 () genes within this pathway in relation to ASD.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pediatrics, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
Butyric acid (BA) can potentially enhance the function of the intestinal barrier. However, the mechanisms by which BA protects the intestinal mucosal barrier remain to be elucidated. Given that the Ras homolog gene family, member A (RhoA)/Rho-associated kinase 2 (ROCK2)/Myosin light chain kinase (MLCK) signaling pathway is crucial for maintaining the permeability of the intestinal epithelium, we further investigated whether BA exerts a protective effect on epithelial barrier function by inhibiting this pathway in LPS-induced Caco2 cells.
View Article and Find Full Text PDFMol Med
December 2024
Department of Neurobiology and Anatomy, Key Laboratory of Neurobiology, Xuzhou Medical University, 209, Tongshan Road, Xuzhou, 221004, China.
Doublecortin (DCX) is a microtubule-associated protein known to be a key regulator of neuronal migration and differentiation during brain development. However, the role of DCX, particularly in regulating the survival and growth of glioma cells, remains unclear. In this study, we utilized CRISPR/Cas9 technology to knock down DCX in the human glioma cell line (U251).
View Article and Find Full Text PDFAm J Physiol Cell Physiol
December 2024
Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
As a gas molecule, hydrogen sulfide (HS) exerts neuroprotective effects. Despite its recognized importance, there remains a need for a deeper understanding of HS's impact on vascular smooth muscle cells and its role in ischemic brain injury. This study employs encompassing cultured primary cerebral vascular smooth muscle cells, oxygen-glucose deprivation/reoxygenation model, in vitro vascular tone assessments, in vivo middle cerebral artery occlusion and reperfusion experimentation in male rats, and the utilization of ROCK knockout, to unravel the intricate relationship between H2S and cerebrovascular diastolic function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!