The prevention, prognosis and resolution of decompression sickness (DCS) are not satisfactory. The etiology of DCS has highlighted thrombotic and inflammatory phenomena that could cause severe neurological disorders or even death. Given the immunomodulatory effects described for minocycline, an antibiotic in widespread use, we have decided to explore its effects in an experimental model for decompression sickness. 40 control mice (Ctrl) and 40 mice treated orally with 90 mg/kg of minocycline (MINO) were subjected to a protocol in a hyperbaric chamber, compressed with air. The purpose was to mimic a scuba dive to a depth of 90 msw and its pathogenic decompression phase. Clinical examinations and blood counts were conducted after the return to the surface. For the first time they were completed by a simple infrared (IR) imaging technique in order to assess feasibility and its clinical advantage in differentiating the sick mice (DCS) from the healthy mice (NoDCS). In this tudy, exposure to the hyperbaric protocol provoked a reduction in the number of circulating leukocytes. DCS in mice, manifesting itself by paralysis or convulsion for example, is also associated with a fall in platelets count. Cold areas ( < 25°C) were detected by IR in the hind paws and tail with significant differences ( < 0.05) between DCS and NoDCS. Severe hypothermia was also shown in the DCS mice. The ROC analysis of the thermograms has made it possible to determine that an average tail temperature below 27.5°C allows us to consider the animals to be suffering from DCS (OR = 8; AUC = 0.754, = 0.0018). Minocycline modulates blood analysis and it seems to limit the mobilization of monocytes and granulocytes after the provocative dive. While a higher proportion of mice treated with minocycline experienced DCS symptoms, there is no significant difference. The infrared imaging has made it possible to show severe hypothermia. It suggests an modification of thermregulation in DCS animals. Surveillance by infrared camera is fast and it can aid the prognosis in the case of decompression sickness in mice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6668502 | PMC |
http://dx.doi.org/10.3389/fphys.2019.00933 | DOI Listing |
J Intensive Care Med
January 2025
Anand Pharmacy College, Anand, Gujarat, India.
Hyperbaric Oxygen Therapy (HBOT) is a medical treatment that involves administering 100% oxygen at increased atmospheric pressure to enhance oxygen delivery to tissues. Initially developed for decompression sickness, HBOT has since been utilized for a wide range of medical conditions, including severe infections, non-healing wounds, and, more recently, COVID-19. This review explores the historical development of HBOT, its principles, its emerging role in the management of and its outcome as treatment in COVID-19, particularly in mitigating inflammation, hypoxemia, and oxidative stress.
View Article and Find Full Text PDFRes Pract Thromb Haemost
January 2025
Hematology Department, Assistance Publique - Hôpitaux de Paris-Centre Université de Paris, Paris, France.
The question of whether scuba diving is safe for patients with a history of venous thromboembolism (VTE) remains unanswered. Cases of VTE have been reported after decompression accidents but not following properly conducted dives. However, the risk of VTE and bleeding on anticoagulant therapy during diving has yet to be defined.
View Article and Find Full Text PDFJ Agromedicine
January 2025
Department of Connectivity, Comunidad y Biodiversidad A.C., Guaymas Sonora, México.
Objectives: This study aimed to evaluate the working and health conditions faced by divers in small-scale fisheries in the Midriff Islands Region of the Gulf of California, Mexico.
Methods: The study was conducted in five fishing communities. A semi-structured questionnaire was administered to 113 fishers (~15% of the commercial divers in the region).
Animals (Basel)
December 2024
Department of Veterinary Medicine, University of Bari "Aldo Moro", Strada Provinciale 62 per Casamassima Km 3, 70010 Valenzano, Italy.
Sea turtles face numerous threats, often stemming from human activities, resulting in high mortality rates. One of the primary risks they encounter is posed by fishing activities. In the South Adriatic Sea, the extensive trawling fleet often impacts sea turtles, and in recent years, a specific disorder, known as gas embolism (GE), and the associated disease known as decompression sickness (DCS), has emerged as a new threat.
View Article and Find Full Text PDFInt Marit Health
January 2025
National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine in Gdynia, Medical University of Gdansk, Poland.
Medical hyperbaric sessions for Hyperbaric Oxygen Therapy, conducted at 2.4-2.5 ATA for 80 to 120 minutes, expose staff to increased risk of DCS due to the inhalation of compressed air, which increases gas solubility in body fluids as per Henry's Law.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!