Cyamopsis tetragonoloba (L) endosperm predominantly contains guar gum a polysaccharide, which has tremendous industrial applications in food, textile, paper, oil drilling and water treatment. In order to understand the genes controlling galactomannan biosynthesis, mRNA was isolated from seeds collected at different developmental stages; young pods, mature pods and young leaf from two guar varieties, HG365 and HG870 and subjected to Illumina sequencing. De novo assembly of fourteen individual read files from two varieties of guar representing seven developmental stages gave a total of 1,13,607 contigs with an N50 of 1,244 bases. Annotation of assemblies with GO mapping revealed three levels of distribution, namely, Biological Processes, Molecular Functions and Cellular Components. GO studies identified major genes involved in galactomannan biosynthesis: Cellulose synthase D1 (CS D1) and GAUT-like gene families. Among the polysaccharide biosynthetic process (GO:0000271) genes the transcript abundance for CS was found to be predominantly more in leaf samples, whereas, the transcript abundance for GAUT-like steadily increased from 65% to 90% and above from stage1 to stage5 indicating accumulation of galactomannan in developing seeds; and validated by qRT-PCR analysis. Galactomannan quantification by HPLC showed HG365 (12.98-20.66%) and HG870 (7.035-41.2%) gradually increasing from stage1 to stage 5 (10-50 DAA) and highest accumulation occurred in mature and dry seeds with 3.8 to 7.1 fold increase, respectively. This is the first report of transcriptome sequencing and complete profiling of guar seeds at different developmental stages, young pods, mature pods and young leaf material from two commercially important Indian varieties and elucidation of galactomannan biosynthesis pathway. It is envisaged that the data presented herein will be very useful for improvement of guar through biotechnological interventions in future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687724 | PMC |
http://dx.doi.org/10.1038/s41598-019-48072-w | DOI Listing |
Int J Mol Sci
December 2024
Metabolic Engineering Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Republic of Korea.
The black soldier fly, , is a voracious scavenger of various organic materials; therefore, it could be exploited as a biological system for processing daily food waste. In order to survey novel hydrolytic enzymes, we constructed a fosmid metagenome library using unculturable intestinal microorganisms from . Through functional screening of the library on carboxymethyl cellulose plates, we identified a fosmid clone, the product of which displayed hydrolytic activity.
View Article and Find Full Text PDFmSphere
December 2024
Department of Pharmacology & Therapeutics, Faculty of Medicine and Health Sciences, McGill University, Montréal, Québec, Canada.
Unlabelled: Dietary fibers influence the composition of the human gut microbiota and directly contribute to its downstream effects on host health. As more research supports the use of glycans as prebiotics for therapeutic applications, the need to identify the gut bacteria that metabolize glycans of interest increases. Fructo-oligosaccharide (FOS) is a common diet-derived glycan that is fermented by the gut microbiota and has been used as a prebiotic.
View Article and Find Full Text PDFDNA Res
December 2024
Graduate School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai 982-0215, Japan.
Locust bean (Ceratonia siliqua) accumulates the galactomannan (GM) locust bean gum (LBG) in its seeds. LBG is a major industrial raw material used as a food thickener and gelling agent, whose unique properties mean that it cannot be readily replaced by other GMs. Whereas much is known about GM accumulation and the genes associated with GM biosynthesis in legumes, the genes involved in GM biosynthesis in C.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
CONAHCYT - Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130, Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico. Electronic address:
In this study, we elaborated advanced asymmetric membranes using polyvinyl alcohol (PVA) and a galactomannan (GA) derived from Delonix regia seeds, a blend known for its biocompatibility properties. These membranes, crosslinked with sulfosuccinic acid (SSA), exhibited remarkable enhancements in various crucial aspects for biomedical applications, in particular provides antibacterial properties. The incorporation of GA leads to the formation of globular regions, enhancing crosslinking and swelling properties.
View Article and Find Full Text PDFJ Ind Microbiol Biotechnol
January 2024
TurtleTree, 1100 Main Street, Suite 300, Woodland, CA 95695, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!