The dispersion of an acoustic surface wave supported by a line of regularly spaced, open ended holes in an acrylic plate, is characterised by precise measurement of its localised acoustic fields. We illustrate the robust character of this surface wave and show its potential for control of sound by the acoustic waveguiding provided by a ring of regularly spaced holes. A single line of open-ended holes is shown to act as simple acoustic waveguide that can be readily manipulated to control the flow of sound.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6687817 | PMC |
http://dx.doi.org/10.1038/s41598-019-47988-7 | DOI Listing |
J Phys Chem C Nanomater Interfaces
January 2025
Technical University of Munich, TUM School of Natural Sciences, Physics Department E20, Garching 85748, Germany.
Metalloporphyrins on interfaces offer a rich playground for functional materials and hence have been subjected to intense scrutiny over the past decades. As the same porphyrin macrocycle on the same surface may exhibit vastly different physicochemical properties depending on the metal center and its substituents, it is vital to have a thorough structural and chemical characterization of such systems. Here, we explore the distinctions arising from coverage and macrocycle substituents on the closely related ruthenium octaethyl porphyrin and ruthenium tetrabenzo porphyrin on Ag(111).
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8581, Japan.
Nonequilibrium membrane pattern formation is studied using meshless membrane simulation. We consider that molecules bind to either surface of a bilayer membrane and move to the opposite leaflet by flip-flop. When binding does not modify the membrane properties and the transfer rates among the three states are cyclically symmetric, the membrane exhibits spiral-wave and homogeneous-cycling modes at high and low binding rates, respectively, as in an off-lattice cyclic Potts model.
View Article and Find Full Text PDFACS Nano
January 2025
IBM Almaden Research Center, San Jose 95120-6099, California, United States.
Controlling spin-polarized currents at the nanoscale is of immense importance for high-density magnetic data storage and spin-based logic devices. As electronic devices are miniaturized to the ultimate limit of individual atoms and molecules, electronic transport is strongly influenced by the properties of the individual spin centers and their magnetic interactions. In this work, we demonstrate the precise control and detection of spin-polarized currents through two coupled spin centers at a tunnel junction by controlling their spin-spin interactions.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Ocean Observation and Forecasting and Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Storage of anthropogenic heat in the oceans is spatially inhomogeneous, impacting regional climates and human societies. Climate models project enhanced heat storage in the mid-latitude North Pacific (MNP) and much weaker storage in the tropical Pacific. However, the observed heat storage during the past half-century shows a more complex pattern, with limited warming in the MNP and enhanced warming in the northwest tropical Pacific.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
Conjugation plays a major role in dissemination of antimicrobial resistance genes. Following transfer of IncF-like plasmids, recipients become refractory to a second wave of conjugation with the same plasmid via entry (TraS) and surface (TraT) exclusion mechanisms. Here, we show that TraT from the pKpQIL and F plasmids (TraT and TraT) exhibits plasmid surface exclusion specificity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!