Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits.

Science

Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China.

Published: August 2019

Multipartite entangled states are crucial for numerous applications in quantum information science. However, the generation and verification of multipartite entanglement on fully controllable and scalable quantum platforms remains an outstanding challenge. We report the deterministic generation of an 18-qubit Greenberger-Horne-Zeilinger (GHZ) state and multicomponent atomic Schrödinger cat states of up to 20 qubits on a quantum processor, which features 20 superconducting qubits, also referred to as artificial atoms, interconnected by a bus resonator. By engineering a one-axis twisting Hamiltonian, the system of qubits, once initialized, coherently evolves to multicomponent atomic Schrödinger cat states-that is, superpositions of atomic coherent states including the GHZ state-at specific time intervals as expected. Our approach on a solid-state platform should not only stimulate interest in exploring the fundamental physics of quantum many-body systems, but also enable the development of applications in practical quantum metrology and quantum information processing.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aay0600DOI Listing

Publication Analysis

Top Keywords

multicomponent atomic
12
atomic schrödinger
12
schrödinger cat
12
cat states
8
states qubits
8
quantum
6
generation multicomponent
4
atomic
4
states
4
qubits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!