This paper focuses on the design of a pinning sampled-data control mechanism for the exponential synchronization of directed coupled reaction-diffusion neural networks (CRDNNs) with sampled-data communications (SDCs). A new Lyapunov-Krasovskii functional (LKF) with some sampled-instant-dependent terms is presented, which can fully utilize the actual sampling information. Then, an inequality is first proposed, which effectively relaxes the restrictions of the positive definiteness of the constructed LKF. Based on the LKF and the inequality, sufficient conditions are derived to exponentially synchronize the directed CRDNNs with SDCs. The desired pinning sampled-data control gain is precisely obtained by solving some linear matrix inequalities (LMIs). Moreover, a less conservative exponential synchronization criterion is also established for directed coupled neural networks with SDCs. Finally, simulation results are provided to verify the effectiveness and merits of the theoretical results.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNNLS.2019.2928039DOI Listing

Publication Analysis

Top Keywords

directed coupled
12
neural networks
12
synchronization directed
8
coupled reaction-diffusion
8
reaction-diffusion neural
8
sampled-data communications
8
pinning sampled-data
8
sampled-data control
8
exponential synchronization
8
pinning synchronization
4

Similar Publications

Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.

View Article and Find Full Text PDF

Photoredox-Enabled Direct and Three-Component Difluoroalkylative Modification of -Aryl Glycinates.

Org Lett

January 2025

Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China.

A Cu(I) photoredox-enabled reaction that selectively incorporates a difluoroalkyl group into -aryl glycine derivatives has been established. Using a bench-stable [PhPCFH]Br salt, the -CFH group could be installed either directly on the α-carbon of the glycine backbone or in a three-component fashion using an alkene as a bridge. A series of glycine derivatives have been evaluated, providing access to diverse unnatural amino esters and dipeptides with a -CHF unit.

View Article and Find Full Text PDF

Parental burnout is a prominent topic in current family research, with proven detrimental effects on the well-being of both parents and children. However, the specific mechanism by which parenting burnout impacts the parent-child relationship within families remains unclear. Furthermore, there is limited research exploring whether parenting burnout has a direct impact on the parent-child relationship.

View Article and Find Full Text PDF

Two TAL Effectors of Xanthomonas citri pv. malvacearum Induce Water Soaking by Activating GhSWEET14 Genes in Cotton.

Mol Plant Pathol

January 2025

Shanghai Collaborative Innovation Center of Agri-Seeds/State Key Laboratory of Microbial Metabolism, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China.

Bacterial blight of cotton (BBC) caused by Xanthomonas citri pv. malvacearum (Xcm) is an important and destructive disease affecting cotton plants. Transcription activator-like effectors (TALEs) released by the pathogen regulate cotton resistance to the susceptibility.

View Article and Find Full Text PDF

Impact of electric vehicle battery recycling on reducing raw material demand and battery life-cycle carbon emissions in China.

Sci Rep

January 2025

Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, The Chinese Academy of Sciences, Shenzhen, Guangdong Province, People's Republic of China.

The rapid growth of electric vehicles (EVs) in China challenges raw material demand. This study evaluates the impact of recycling and reusing EV batteries on reducing material demand and carbon emissions. Integrating a national-level vehicle stock turnover model with life-cycle carbon emission assessment, we found that replacing nickel-cobalt-manganese batteries with lithium iron phosphate batteries with battery recycling can reduce lithium, cobalt, and nickel demand between 2021 and 2060 by up to 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!