ADPKD cell proliferation and Cl-dependent fluid secretion.

Methods Cell Biol

Departments of Internal Medicine and Molecular and Integrative Physiology, and The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States. Electronic address:

Published: May 2020

Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by bilateral fluid-filled cysts, renal inflammation and extensive fibrosis, leading to the progressive decline in kidney function. Renal cyst formation begins in utero from aberrant proliferation of tubule epithelial cells; however, the mechanisms for cystogenesis remain unclear. Cell proliferation and Cl-dependent fluid secretion, which drives the accumulation of cyst fluid, are responsible for inexorable growth of cysts and the remarkable appearance of massively enlarged ADPKD kidneys. Investigators have used in vitro assays to explore cellular and molecular mechanisms involved in ADPKD cyst epithelial cell proliferation and Cl-dependent fluid secretion in experimentally controlled environments. These assays have been used to evaluate potential therapeutic approaches to inhibit cellular pathways involved in cyst growth. This chapter discusses methods for measuring ADPKD cell proliferation, transepithelial Cl secretion, and net fluid transport across cyst epithelial cell monolayers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.mcb.2019.06.001DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
proliferation cl-dependent
12
cl-dependent fluid
12
fluid secretion
12
adpkd cell
8
cyst epithelial
8
epithelial cell
8
adpkd
5
proliferation
5
fluid
5

Similar Publications

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

This study investigated tempol action on genes and miRNAs related to NFκB pathway in androgen dependent or independent cell lines and in TRAMP model in the early and late-stages of cancer progression. A bioinformatic search was conducted to select the miRNAs to be measured based on the genes of interest from NFκB pathway. The miR-let-7c-5p, miR-26a-5p and miR-155-5p and five target genes (BCL2, BCL2L1, RELA, TNF, PTGS2) were chosen for RT-PCR and gene enrichment analyses.

View Article and Find Full Text PDF

Autologous adipose tissue grafting (AAG) can provide soft tissue reconstruction in congenital defects, traumatic injuries, cancer care, or cosmetic procedures; over 94,000 AAG procedures are performed in the United States every year. Despite its effectiveness, the efficiency of AAG is limited by unpredictable adipocyte survival, impacting graft volume retention (26-83%). Acellular adipose matrices (AAMs) have emerged as a potential alternative to AAG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!