Cell-free systems (CFS) have recently evolved into key platforms for synthetic biology applications. Many synthetic biology tools have traditionally relied on cell-based systems, and while their adoption has shown great progress, the constraints inherent to the use of cellular hosts have limited their reach and scope. Cell-free systems, which can be thought of as programmable liquids, have removed many of these complexities and have brought about exciting opportunities for rational design and manipulation of biological systems. Here we review how these simple and accessible enzymatic systems are poised to accelerate the rate of advancement in synthetic biology and, more broadly, biotechnology.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688370 | PMC |
http://dx.doi.org/10.1186/s12915-019-0685-x | DOI Listing |
Org Lett
January 2025
School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
Synthetic C-glycosides play a crucial role in molecular biology and medicine. With the surge of interest in C-glycosides and the demand to provide efforts with sufficient feedstock, it is highly significant to pursue novel methodologies to access C-glycosides in a concise and efficient manner. Here, we disclose an attractive strategy that diverges itself from conventional multistep reaction sequences involving the manipulations of protecting groups.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Colorectal Surgery, College of Clinical Medicine for Oncology, Fujian Medical University, Fuzhou, Fujian, China.
MicroRNA (miRNA) is a promising biomarker for the early diagnosis of pancreatic cancer. To enable sensitive and reliable miRNA detection, we have developed a one-pot isothermal CRISPR/Dx detection system by combining rolling circle amplification (RCA) and CRISPR/Cas12a. RCA and CRISPR/Cas12a reactions are carried out in a single closed tube, bypassing the transferring step.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China.
Improper use of antibiotics has led to the development of antimicrobial resistance, or "superbugs," outpacing the discovery of new antibiotics. The lack of rapid, high-throughput screening methods is a major bottleneck in discovery novel antibiotics. Traditional methods consume significant amounts of samples, making it challenging to discover new antibiotics from limited natural product extracts.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Department of Gynecology, Peking University First Hospital Ningxia Women and Children's Hospital, Yinchuan, Ningxia, China.
For over a century, scientists have been harnessing the therapeutic potential of bacteria in treating diseases. The advent of synthetic biology in recent years has propelled the development of genetically engineered bacteria with enhanced intelligence. These bacteria can autonomously detect environmental cues and relay them to pivotal promoters, leading to the expression of functional proteins.
View Article and Find Full Text PDFAdvances in deep learning have significantly aided protein engineering in addressing challenges in industrial production, healthcare, and environmental sustainability. This review frames frequently researched problems in protein understanding and engineering from the perspective of deep learning. It provides a thorough discussion of representation methods for protein sequences and structures, along with general encoding pipelines that support both pre-training and supervised learning tasks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!